메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

Boosting for high-dimensional two-class prediction

Author keywords

AdaBoost.M1; Boosting; Class prediction; Gradient boosting; LogitBoost; Stochastic Gradient boosting

Indexed keywords

ADAPTIVE BOOSTING; ALGORITHMS; CLUSTERING ALGORITHMS; DATA MINING; FORECASTING; GENE EXPRESSION; SHRINKAGE; STOCHASTIC SYSTEMS;

EID: 84942019335     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0723-9     Document Type: Article
Times cited : (29)

References (51)
  • 2
    • 41649098547 scopus 로고    scopus 로고
    • Classification of breast cancer versus normal samples from mass spectrometry profiles using linear discriminant analysis of important features selected by random forest
    • Datta S. Classification of breast cancer versus normal samples from mass spectrometry profiles using linear discriminant analysis of important features selected by random forest. Stat Appl Genet Mol Biol. 2008;7.
    • (2008) Stat Appl Genet Mol Biol , pp. 7
    • Datta, S.1
  • 3
    • 77954083699 scopus 로고    scopus 로고
    • Gene expression profiling of peripheral blood cells for early detection of breast cancer
    • Aaroe J, Lindahl T, Dumeaux V, Sabo S, Tobin D, Hagen N, et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Res. 2010;12:R7.
    • (2010) Breast Cancer Res , vol.12
    • Aaroe, J.1    Lindahl, T.2    Dumeaux, V.3    Sabo, S.4    Tobin, D.5    Hagen, N.6
  • 4
    • 80052567230 scopus 로고    scopus 로고
    • Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting
    • Collins G, Mallett S, Omar O, Yu LM. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011; 9:103.
    • (2011) BMC Med , vol.9 , pp. 103
    • Collins, G.1    Mallett, S.2    Omar, O.3    Yu, L.M.4
  • 5
    • 0347181849 scopus 로고    scopus 로고
    • A data review and re-assessment of ovarian cancer serum proteomic profiling
    • Sorace JM, Zhan M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinforma. 2003; 4:24.
    • (2003) BMC Bioinforma , vol.4 , pp. 24
    • Sorace, J.M.1    Zhan, M.2
  • 6
    • 85168638570 scopus 로고    scopus 로고
    • Advances in mass spectrometry-based technologies to direct personalized medicine in ovarian cancer
    • Leung F, Musrap N, Diamandis EP, Kulasingam V. Advances in mass spectrometry-based technologies to direct personalized medicine in ovarian cancer. Adv Integr Med. 2013; 1:74-86.
    • (2013) Adv Integr Med , vol.1 , pp. 74-86
    • Leung, F.1    Musrap, N.2    Diamandis, E.P.3    Kulasingam, V.4
  • 7
    • 79952415527 scopus 로고    scopus 로고
    • Taming the dragon: genomic biomarkers to individualize the treatment of cancer
    • Majewski IJ, Bernards R. Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nat Med. 2011;304-12.
    • (2011) Nat Med , pp. 304-312
    • Majewski, I.J.1    Bernards, R.2
  • 8
    • 84877278637 scopus 로고    scopus 로고
    • Implementing personalized cancer genomics in clinical trials
    • Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013; 12(5):358-69.
    • (2013) Nat Rev Drug Discov , vol.12 , Issue.5 , pp. 358-369
    • Simon, R.1    Roychowdhury, S.2
  • 9
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003; 33:49-54.
    • (2003) Nat Genet , vol.33 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.N.2    Lander, E.S.3    Golub, T.R.4
  • 10
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002; 8:68.
    • (2002) Nat Med , vol.8 , pp. 68
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3    Weng, A.P.4    Kutok, J.L.5    Aguiar, R.C.6
  • 11
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. The Lancet. 2003; 361(9361):923-9.
    • (2003) The Lancet , vol.361 , Issue.9361 , pp. 923-929
    • Iizuka, N.1    Oka, M.2    Yamada-Okabe, H.3    Nishida, M.4    Maeda, Y.5    Mori, N.6
  • 12
    • 84880059657 scopus 로고    scopus 로고
    • The electronic medical records and genomics (eMERGE) network: past, present, and future
    • Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The electronic medical records and genomics (eMERGE) network: past, present, and future. Genet Med. 2013; 15(10):761-71.
    • (2013) Genet Med , vol.15 , Issue.10 , pp. 761-771
    • Gottesman, O.1    Kuivaniemi, H.2    Tromp, G.3    Faucett, W.A.4    Li, R.5    Manolio, T.A.6
  • 13
    • 84893783009 scopus 로고    scopus 로고
    • Predicting stroke through genetic risk functions The CHARGE risk score project
    • Ibrahim-Verbaas CA, Fornage M, Bis JC, Choi SH, Psaty BM, Meigs JB, et al. Predicting stroke through genetic risk functions The CHARGE risk score project. Stroke. 2014; 45(2):403-12.
    • (2014) Stroke , vol.45 , Issue.2 , pp. 403-412
    • Ibrahim-Verbaas, C.A.1    Fornage, M.2    Bis, J.C.3    Choi, S.H.4    Psaty, B.M.5    Meigs, J.B.6
  • 14
    • 58149330446 scopus 로고    scopus 로고
    • Breast cancer diagnosis from proteomic mass spectrometry data: a comparative evaluation
    • J HD. Breast cancer diagnosis from proteomic mass spectrometry data: a comparative evaluation. Stat Appl Genet Mol Biol. 2008; 7(2):1-23.
    • (2008) Stat Appl Genet Mol Biol , vol.7 , Issue.2 , pp. 1-23
    • J, H.D.1
  • 15
    • 84906222536 scopus 로고    scopus 로고
    • Genetic-based prediction of disease traits: prediction is very difficult, especially about the future
    • Schrodi SJ, Mukherjee S, Shan Y, Tromp G, Sninsky JJ, Callear AP, et al. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future. Front Genet.2014;5.
    • (2014) Front Genet , pp. 5
    • Schrodi, S.J.1    Mukherjee, S.2    Shan, Y.3    Tromp, G.4    Sninsky, J.J.5    Callear, A.P.6
  • 16
    • 77955622534 scopus 로고    scopus 로고
    • An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data
    • Datta S, Pihur V, Datta S. An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data. BMC Bioinforma. 2010; 11:427.
    • (2010) BMC Bioinforma , vol.11 , pp. 427
    • Datta, S.1    Pihur, V.2    Datta, S.3
  • 17
    • 84923206447 scopus 로고    scopus 로고
    • Evaluation of an ensemble of genetic models for prediction of a quantitative trait
    • Milton JN, Steinberg MH, Sebastiani P. Evaluation of an ensemble of genetic models for prediction of a quantitative trait. Front Genet. 2014;5.
    • (2014) Front Genet , pp. 5
    • Milton, J.N.1    Steinberg, M.H.2    Sebastiani, P.3
  • 18
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn. 1996; 24:123-40.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 23
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002; 97(457):77 - 87.
    • (2002) J Am Stat Assoc , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 25
    • 77952337302 scopus 로고    scopus 로고
    • An experimental evaluation of boosting methods for classification
    • Stollhoff R, Sauerbrei W, Schumacher M. An experimental evaluation of boosting methods for classification. Methods Inform Med. 2010; 49(3):219-29.
    • (2010) Methods Inform Med , vol.49 , Issue.3 , pp. 219-229
    • Stollhoff, R.1    Sauerbrei, W.2    Schumacher, M.3
  • 26
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: predicting protein disorder using boosting and deep networks
    • Eickholt J, Cheng J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinforma. 2013; 14:88.
    • (2013) BMC Bioinforma , vol.14 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 27
    • 84886737285 scopus 로고    scopus 로고
    • A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms
    • Goodswen S, Kennedy P, Ellis J. A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms. BMC Bioinforma. 2013; 14:315.
    • (2013) BMC Bioinforma , vol.14 , pp. 315
    • Goodswen, S.1    Kennedy, P.2    Ellis, J.3
  • 29
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling M, Buhlmann P. Boosting for tumor classification with gene expression data. Bioinformatics. 2003; 19(9):1061-9.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Buhlmann, P.2
  • 30
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann Stat. 2000;38(2):337-407.
    • (2000) Ann Stat , vol.38 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 32
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2000; 29:1189-232.
    • (2000) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 33
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 1999; 38:367-78.
    • (1999) Comput Stat Data Anal , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 34
    • 34547142781 scopus 로고    scopus 로고
    • Boosting ridge regression
    • Tutz G, Binder H. Boosting ridge regression. Comput Stat Data Anal. 2007; 51(12):6044-59.
    • (2007) Comput Stat Data Anal , vol.51 , Issue.12 , pp. 6044-6059
    • Tutz, G.1    Binder, H.2
  • 35
    • 84859815011 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape for high dimensional data-a flexible approach based on boosting
    • Mayr A, Fenske N, Hofner B, Kneib T, Schmid M. Generalized additive models for location, scale and shape for high dimensional data-a flexible approach based on boosting. J R Stat Soc Series C (Appl Stat). 2012; 61(3):403-27.
    • (2012) J R Stat Soc Series C (Appl Stat) , vol.61 , Issue.3 , pp. 403-427
    • Mayr, A.1    Fenske, N.2    Hofner, B.3    Kneib, T.4    Schmid, M.5
  • 36
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • Guo Y, Hastie T, Tibshirani R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics. 2007; 8:86-100.
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 37
    • 70450228445 scopus 로고    scopus 로고
    • Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data
    • Pang H, Tong T, Zhao H. Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data. Biometrics. 2009; 65(4):1021-9.
    • (2009) Biometrics , vol.65 , Issue.4 , pp. 1021-1029
    • Pang, H.1    Tong, T.2    Zhao, H.3
  • 38
    • 0042838307 scopus 로고    scopus 로고
    • Breast cancer classification and prognosis based on gene expression profiles from a population-based study
    • Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Nat Acad Sci USA. 2003; 100(18):10393-8.
    • (2003) Proc Nat Acad Sci USA , vol.100 , Issue.18 , pp. 10393-10398
    • Sotiriou, C.1    Neo, S.Y.2    McShane, L.M.3    Korn, E.L.4    Long, P.M.5    Jazaeri, A.6
  • 39
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
    • Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet. 2005; 365(9460):671-9.
    • (2005) The Lancet , vol.365 , Issue.9460 , pp. 671-679
    • Wang, Y.1    Klijn, J.G.M.2    Zhang, Y.3    Sieuwerts, A.M.4    Look, M.P.5    Yang, F.6
  • 40
    • 33751261643 scopus 로고    scopus 로고
    • Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer
    • Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res. 2006; 66(21):10292-301.
    • (2006) Cancer Res , vol.66 , Issue.21 , pp. 10292-10301
    • Ivshina, A.V.1    George, J.2    Senko, O.3    Mow, B.4    Putti, T.C.5    Smeds, J.6
  • 41
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009; 21(9):1263-84.
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 42
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinforma. 2010; 11:523.
    • (2010) BMC Bioinforma , vol.11 , pp. 523
    • Blagus, R.1    Lusa, L.2
  • 43
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006; 27(8):861-74.
    • (2006) Pattern Recognit Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 44
    • 84977474146 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979; 6:65-70.
    • (1979) Scand J Stat , vol.6 , pp. 65-70
    • Holm, S.1
  • 45
    • 5344244656 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008. [ http://www.R-project.org ]. [ISBN 3-900051-07-0].
    • (2008) R: A language and environment for statistical computing
  • 46
    • 14644395930 scopus 로고    scopus 로고
    • Population theory for boosting ensembles
    • Breiman L. Population theory for boosting ensembles. Ann Stat. 2004; 32:1-11.
    • (2004) Ann Stat , vol.32 , pp. 1-11
    • Breiman, L.1
  • 47
    • 33947284406 scopus 로고    scopus 로고
    • Boosted classification trees and class probability/quantile estimation
    • Mease D, Wyner AJ, Buja A. Boosted classification trees and class probability/quantile estimation. J Mach Learn Res. 2007; 8:409-39.
    • (2007) J Mach Learn Res , vol.8 , pp. 409-439
    • Mease, D.1    Wyner, A.J.2    Buja, A.3
  • 49
    • 84858743801 scopus 로고    scopus 로고
    • The importance of knowing when to stop. A sequential stopping rule for component-wise gradient boosting
    • Mayr A, Hofner B, Schmid M. The importance of knowing when to stop. A sequential stopping rule for component-wise gradient boosting. Methods Inform Med. 2012; 51(2):178-86.
    • (2012) Methods Inform Med , vol.51 , Issue.2 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 50
    • 49749093449 scopus 로고    scopus 로고
    • Comment: Boosting algorithms Regularization, prediction and model fitting
    • Buja A, Mease D, Wyner AJ. Comment: Boosting algorithms Regularization, prediction and model fitting. Statist Sci. 2007; 22(4):506-12.
    • (2007) Statist Sci , vol.22 , Issue.4 , pp. 506-512
    • Buja, A.1    Mease, D.2    Wyner, A.J.3
  • 51
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • Mease D, Wyner A. Evidence contrary to the statistical view of boosting. J Mach Learn Res. 2008; 9:131-56.
    • (2008) J Mach Learn Res , vol.9 , pp. 131-156
    • Mease, D.1    Wyner, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.