메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2129-2137

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; FEATURE EXTRACTION; NEURAL NETWORKS; OBJECT RECOGNITION; PATTERN RECOGNITION;

EID: 84986300463     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.234     Document Type: Conference Paper
Times cited : (677)

References (45)
  • 3
    • 84959231756 scopus 로고    scopus 로고
    • Deepedge: A multi-scale bifurcated deep network for top-down contour detection
    • G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-scale bifurcated deep network for top-down contour detection. In CVPR, pages 4380-4389, 2015.
    • (2015) CVPR , pp. 4380-4389
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 4
    • 84973862008 scopus 로고    scopus 로고
    • Learning complexityaware cascades for deep pedestrian detection
    • Z. Cai, M. Saberian, and N. Vasconcelos. Learning complexityaware cascades for deep pedestrian detection. In ICCV, 2015.
    • (2015) ICCV
    • Cai, Z.1    Saberian, M.2    Vasconcelos, N.3
  • 6
    • 84867876999 scopus 로고    scopus 로고
    • Crosstalk cascades for framerate pedestrian detection
    • P. Dollár, R. Appel, and W. Kienzle. Crosstalk cascades for framerate pedestrian detection. In ECCV, pages 645-659, 2012.
    • (2012) ECCV , pp. 645-659
    • Dollár, P.1    Appel, R.2    Kienzle, W.3
  • 7
    • 84911443425 scopus 로고    scopus 로고
    • Scalable object detection using deep neural networks
    • D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, pages 2155-2162, 2014.
    • (2014) CVPR , pp. 2155-2162
    • Erhan, D.1    Szegedy, C.2    Toshev, A.3    Anguelov, D.4
  • 9
    • 77955999401 scopus 로고    scopus 로고
    • Cascade object detection with deformable part models
    • P. F. Felzenszwalb, R. B. Girshick, and D. A. McAllester. Cascade object detection with deformable part models. In CVPR, pages 2241-2248, 2010.
    • (2010) CVPR , pp. 2241-2248
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.A.3
  • 13
    • 84955316677 scopus 로고    scopus 로고
    • arXiv preprint arXiv:1504.08083
    • R. Girshick. Fast R-CNN. arXiv preprint arXiv:1504.08083, 2015.
    • (2015) Fast R-CNN
    • Girshick, R.1
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
    • (2014) CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 15
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, pages 447-456, 2015.
    • (2015) CVPR , pp. 447-456
    • Hariharan, B.1    Arbeláez, P.A.2    Girshick, R.B.3    Malik, J.4
  • 16
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, pages 346-361. 2014.
    • (2014) ECCV , pp. 346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 21
    • 84941368895 scopus 로고    scopus 로고
    • A convolutional neural network cascade for face detection
    • H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional neural network cascade for face detection. In CVPR, pages 5325-5334, 2015.
    • (2015) CVPR , pp. 5325-5334
    • Li, H.1    Lin, Z.2    Shen, X.3    Brandt, J.4    Hua, G.5
  • 22
    • 84956981335 scopus 로고    scopus 로고
    • The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification
    • L. Liu, C. Shen, and A. van den Hengel. The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification. In CVPR, pages 4749-4757, 2015.
    • (2015) CVPR , pp. 4749-4757
    • Liu, L.1    Shen, C.2    Hengel Den A.Van3
  • 23
    • 84945230598 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, pages 3431-3440, 2015.
    • (2015) CVPR , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 24
    • 84898776600 scopus 로고    scopus 로고
    • Handling occlusions with franken-classifiers
    • M. Mathias, R. Benenson, R. Timofte, and L. J. V. Gool. Handling occlusions with franken-classifiers. In ICCV, pages 1505-1512, 2013.
    • (2013) ICCV , pp. 1505-1512
    • Mathias, M.1    Benenson, R.2    Timofte, R.3    Gool, L.J.V.4
  • 26
    • 84959496883 scopus 로고    scopus 로고
    • Learning to detect vehicles by clustering appearance patterns
    • E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.
    • (2015) T-ITS
    • Ohn-Bar, E.1    Trivedi, M.M.2
  • 33
    • 84887364811 scopus 로고    scopus 로고
    • Deep convolutional network cascade for facial point detection
    • Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point detection. In CVPR, pages 3476-3483, 2013.
    • (2013) CVPR , pp. 3476-3483
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 34
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, pages 2553-2561, 2013.
    • (2013) NIPS , pp. 2553-2561
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 35
    • 84973883645 scopus 로고    scopus 로고
    • Deep learning strong parts for pedestrian detection
    • Y. Tian, P. Luo, X. Wang, and X. Tang. Deep learning strong parts for pedestrian detection. In ICCV, 2015.
    • (2015) ICCV
    • Tian, Y.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 36
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. A. Viola and M. J. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, pages 511-518, 2001.
    • (2001) CVPR , pp. 511-518
    • Viola, P.A.1    Jones, M.J.2
  • 37
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, pages 17-24, 2013.
    • (2013) ICCV , pp. 17-24
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 38
    • 84959238956 scopus 로고    scopus 로고
    • Data-driven 3D voxel patterns for object category recognition
    • Y. Xiang, W. Choi, Y. Lin, and S. Savarese. Data-driven 3D voxel patterns for object category recognition. In CVPR, 2015.
    • (2015) CVPR
    • Xiang, Y.1    Choi, W.2    Lin, Y.3    Savarese, S.4
  • 40
    • 84959226659 scopus 로고    scopus 로고
    • A discriminative CNN video representation for event detection
    • Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative CNN video representation for event detection. In CVPR, pages 1798-1807, 2015.
    • (2015) CVPR , pp. 1798-1807
    • Xu, Z.1    Yang, Y.2    Hauptmann, A.G.3
  • 41
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833. 2014.
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 42
    • 84959196836 scopus 로고    scopus 로고
    • Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction
    • Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. In CVPR, pages 249-258, 2015.
    • (2015) CVPR , pp. 249-258
    • Zhang, Y.1    Sohn, K.2    Villegas, R.3    Pan, G.4    Lee, H.5
  • 44
    • 84959233955 scopus 로고    scopus 로고
    • SegDeepM: Exploiting segmentation and context in deep neural networks for object detection
    • Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler. segDeepM: Exploiting segmentation and context in deep neural networks for object detection. In CVPR, pages 4703-4711, 2015.
    • (2015) CVPR , pp. 4703-4711
    • Zhu, Y.1    Urtasun, R.2    Salakhutdinov, R.3    Fidler, S.4
  • 45
    • 84906489617 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, pages 391-405. 2014.
    • (2014) ECCV , pp. 391-405
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.