메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1904-1912

Deep learning strong parts for pedestrian detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTER VISION; NEURAL NETWORKS;

EID: 84973883645     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.221     Document Type: Conference Paper
Times cited : (552)

References (43)
  • 4
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR. 2005.
    • (2005) CVPR.
    • Dalal, N.1    Triggs, B.2
  • 8
    • 84857435937 scopus 로고    scopus 로고
    • Pedestrian detection: An evaluation of the state of the art
    • P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, 2012.
    • (2012) TPAMI
    • Dollár, P.1    Wojek, C.2    Schiele, B.3    Perona, P.4
  • 9
    • 77955998866 scopus 로고    scopus 로고
    • Multi-cue pedestrian classification with partial occlusion handling
    • M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila. Multi-cue pedestrian classification with partial occlusion handling. In CVPR, 2010.
    • (2010) CVPR
    • Enzweiler, M.1    Eigenstetter, A.2    Schiele, B.3    Gavrila, D.M.4
  • 11
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving? the kitti vision benchmark suite
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012.
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84959195179 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Iandola, F.2    Darrell, T.3    Malik, J.4
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 84926429586 scopus 로고    scopus 로고
    • Discriminatively trained and-or graph models for object shape detection
    • L. Lin, X. Wang, W. Yang, and J. Lai. Discriminatively trained and-or graph models for object shape detection. In TPAMI, 2015.
    • (2015) TPAMI
    • Lin, L.1    Wang, X.2    Yang, W.3    Lai, J.4
  • 17
    • 84911449919 scopus 로고    scopus 로고
    • Switchable deep network for pedestrian detection
    • P. Luo, Y. Tian, X. Wang, and X. Tang. Switchable deep network for pedestrian detection. In CVPR, 2014.
    • (2014) CVPR
    • Luo, P.1    Tian, Y.2    Wang, X.3    Tang, X.4
  • 19
    • 24644521635 scopus 로고    scopus 로고
    • Human detection based on a probabilistic assembly of robust part detectors
    • K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a probabilistic assembly of robust part detectors. In ECCV, 2004.
    • (2004) ECCV
    • Mikolajczyk, K.1    Schmid, C.2    Zisserman, A.3
  • 20
    • 0035305653 scopus 로고    scopus 로고
    • Example-based object detection in images by components
    • A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in images by components. TPAMI, 2001.
    • (2001) TPAMI
    • Mohan, A.1    Papageorgiou, C.2    Poggio, T.3
  • 21
    • 84973924635 scopus 로고    scopus 로고
    • Local decorrelation for improved pedestrian detection
    • W. Nam, P. Dollár, and J. H. Han. Local decorrelation for improved pedestrian detection. In NIPS, 2012.
    • (2012) NIPS
    • Nam, W.1    Dollár, P.2    Han, J.H.3
  • 22
    • 84866696906 scopus 로고    scopus 로고
    • A discriminative deep model for pedestrian detection with occlusion handling
    • W. Ouyang and X. Wang. A discriminative deep model for pedestrian detection with occlusion handling. In CVPR, 2012.
    • (2012) CVPR
    • Ouyang, W.1    Wang, X.2
  • 23
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In ICCV, 2013.
    • (2013) ICCV
    • Ouyang, W.1    Wang, X.2
  • 24
    • 84887365811 scopus 로고    scopus 로고
    • Single-pedestrian detection aided by multi-pedestrian detection
    • W. Ouyang and X. Wang. Single-pedestrian detection aided by multi-pedestrian detection. In CVPR, 2013.
    • (2013) CVPR
    • Ouyang, W.1    Wang, X.2
  • 26
    • 84887380448 scopus 로고    scopus 로고
    • Modeling mutual visibility relationship in pedestrian detection
    • W. Ouyang, X. Zeng, and X. Wang. Modeling mutual visibility relationship in pedestrian detection. In CVPR, 2013.
    • (2013) CVPR
    • Ouyang, W.1    Zeng, X.2    Wang, X.3
  • 28
    • 84887328711 scopus 로고    scopus 로고
    • Exploring weak stabilization for motion feature extraction
    • D. Park, C. Zitnick, D. Ramanan, and P. Dollar. Exploring weak stabilization for motion feature extraction. In CVPR, 2013.
    • (2013) CVPR
    • Park, D.1    Zitnick, C.2    Ramanan, D.3    Dollar, P.4
  • 29
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multi-stage feature learning
    • P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-stage feature learning. In CVPR. 2013.
    • (2013) CVPR.
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    LeCun, Y.4
  • 31
    • 84907591679 scopus 로고    scopus 로고
    • Detection and tracking of occluded people
    • S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of occluded people. IJCV, 2014.
    • (2014) IJCV
    • Tang, S.1    Andriluka, M.2    Schiele, B.3
  • 32
    • 84959241019 scopus 로고    scopus 로고
    • Pedestrian detection aided by deep learning semantic tasks
    • Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian detection aided by deep learning semantic tasks. In CVPR, 2015.
    • (2015) CVPR
    • Tian, Y.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 33
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • P. Viola and M. J. Jones. Robust real-time face detection. IJCV, 2004.
    • (2004) IJCV
    • Viola, P.1    Jones, M.J.2
  • 34
    • 17444367737 scopus 로고    scopus 로고
    • Detecting pedestrians using patterns of motion and appearance
    • P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. IJCV, 2005.
    • (2005) IJCV
    • Viola, P.1    Jones, M.J.2    Snow, D.3
  • 35
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.
    • (2013) ICCV
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 36
    • 80052870090 scopus 로고    scopus 로고
    • Monocular 3d scene understanding with explicit occlusion reasoning
    • C. Wojek, S. Walk, S. Roth, and B. Schiele. Monocular 3d scene understanding with explicit occlusion reasoning. In CVPR, 2011.
    • (2011) CVPR
    • Wojek, C.1    Walk, S.2    Roth, S.3    Schiele, B.4
  • 37
    • 33745943636 scopus 로고    scopus 로고
    • Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors
    • B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. In ICCV, 2005.
    • (2005) ICCV
    • Wu, B.1    Nevatia, R.2
  • 38
    • 84887356865 scopus 로고    scopus 로고
    • Robust multiresolution pedestrian detection in traffic scenes
    • J. Yan, X. Zhang, Z. Lei, S. Liao, and S. Li. Robust multiresolution pedestrian detection in traffic scenes. In CVPR, 2013.
    • (2013) CVPR
    • Yan, J.1    Zhang, X.2    Lei, Z.3    Liao, S.4    Li, S.5
  • 39
    • 84966582502 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV. 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 40
    • 84898828144 scopus 로고    scopus 로고
    • Multi-stage contextual deep learning for pedestrian detection
    • X. Zeng, W. Ouyang, and X. Wang. Multi-stage contextual deep learning for pedestrian detection. In ICCV, 2013.
    • (2013) ICCV
    • Zeng, X.1    Ouyang, W.2    Wang, X.3
  • 41
    • 84956617559 scopus 로고    scopus 로고
    • Partbased r-cnns for fine-grained category detection
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased r-cnns for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 42
    • 84911389929 scopus 로고    scopus 로고
    • Informed haarlike features improve pedestrian detection
    • S. Zhang, C. Bauckhage, and A. Cremers. Informed haarlike features improve pedestrian detection. In CVPR, 2014.
    • (2014) CVPR
    • Zhang, S.1    Bauckhage, C.2    Cremers, A.3
  • 43
    • 84955153854 scopus 로고    scopus 로고
    • Filtered channel features for pedestrian detection
    • S. Zhang, R. Benenson, and B. Schiele. Filtered channel features for pedestrian detection. In CVPR, 2015.
    • (2015) CVPR
    • Zhang, S.1    Benenson, R.2    Schiele, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.