메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1250-1257

Learning latent temporal structure for complex event detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX EVENT DETECTION; COMPLEX EVENTS; CONDITIONAL MODELS; DATA SETS; EXACT INFERENCE; LATENT VARIABLE; MULTIMEDIA EVENT DETECTIONS; OLYMPICS; SEMANTIC UNDERSTANDING; TEMPORAL STRUCTURES; TRECVID;

EID: 84866658784     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247808     Document Type: Conference Paper
Times cited : (353)

References (30)
  • 2
    • 33745164643 scopus 로고    scopus 로고
    • Activity recognition and abnormality detection with the switching hidden semi-markov model
    • 2, 3
    • T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh. Activity recognition and abnormality detection with the switching hidden semi-markov model. In CVPR, 2005. 2, 3
    • (2005) CVPR
    • Duong, T.V.1    Bui, H.H.2    Phung, D.Q.3    Venkatesh, S.4
  • 5
    • 80052915321 scopus 로고    scopus 로고
    • Actom sequence models for efficient action detection
    • 2
    • A. Gaidon, Z. Harchaoui, and C. Schmid. Actom Sequence Models for Efficient Action Detection. In CVPR, 2011. 2
    • (2011) CVPR
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 7
    • 80052873938 scopus 로고    scopus 로고
    • Joint segmentation and classification of human actions in video
    • 2
    • M. Hoai, Z.-Z. Lan, and F. De la Torre. Joint segmentation and classification of human actions in video. In CVPR, 2011. 2
    • (2011) CVPR
    • Hoai, M.1    Lan, Z.-Z.2    De La Torre, F.3
  • 8
    • 0345414187 scopus 로고    scopus 로고
    • Large-scale event detection using semi-hidden markov models
    • 2
    • S. Hongeng and R. Nevatia. Large-scale event detection using semi-hidden markov models. In ICCV, 2003. 2
    • (2003) ICCV
    • Hongeng, S.1    Nevatia, R.2
  • 9
    • 50649103739 scopus 로고    scopus 로고
    • Event detection in crowded videos
    • 2
    • Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In ICCV, 2007. 2
    • (2007) ICCV
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 10
    • 84898426452 scopus 로고    scopus 로고
    • A spatiotemporal descriptor based on 3d-gradients
    • 2, 6
    • A. Kläser, M. Marszalek, and C. Schmid. A spatiotemporal descriptor based on 3d-gradients. In BMVC, 2008. 2, 6
    • (2008) BMVC
    • Kläser, A.1    Marszalek, M.2    Schmid, C.3
  • 11
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • 5
    • I. Laptev. On space-time interest points. IJCV, 2005. 5
    • (2005) IJCV
    • Laptev, I.1
  • 13
    • 70450203660 scopus 로고    scopus 로고
    • Recognizing realistic actions from videos "in the wild"
    • 2
    • J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos "in the wild". CVPR, 2009. 2
    • (2009) CVPR
    • Liu, J.1    Luo, J.2    Shah, M.3
  • 14
    • 34547301408 scopus 로고    scopus 로고
    • Coupled hidden semi markov models for activity recognition
    • 2, 3
    • P. Natarajan and R. Nevatia. Coupled hidden semi markov models for activity recognition. In WMVC, 2007. 2, 3
    • (2007) WMVC
    • Natarajan, P.1    Nevatia, R.2
  • 15
    • 77953182042 scopus 로고    scopus 로고
    • Weakly supervised discriminative localization and classification: A joint learning process
    • 2
    • M. H. Nguyen, L. Torresani, F. De la Torre, and C. Rother. Weakly supervised discriminative localization and classification:a joint learning process. In ICCV, 2009. 2
    • (2009) ICCV
    • Nguyen, M.H.1    Torresani, L.2    De La Torre, F.3    Rother, C.4
  • 16
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • 1, 2, 5, 6
    • J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling temporal structure of decomposable motion segments for activity classification. In ECCV, 2010. 1, 2, 5, 6
    • (2010) ECCV
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 17
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • 2
    • J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. IJCV, 2008. 2
    • (2008) IJCV
    • Niebles, J.C.1    Wang, H.2    Fei-Fei, L.3
  • 20
    • 34047192804 scopus 로고    scopus 로고
    • Semi-markov conditional random fields for information extraction
    • 2
    • S. Sarawagi and W. W. Cohen. Semi-markov conditional random fields for information extraction. In NIPS, 2004. 2
    • (2004) NIPS
    • Sarawagi, S.1    Cohen, W.W.2
  • 21
    • 80052901415 scopus 로고    scopus 로고
    • Modeling the temporal extent of actions
    • 2
    • S. Satkin and M. Hebert. Modeling the temporal extent of actions. In ECCV, 2010. 2
    • (2010) ECCV
    • Satkin, S.1    Hebert, M.2
  • 22
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local svm approach
    • 2
    • C. Schüldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm approach. In ICPR, 2004. 2
    • (2004) ICPR
    • Schüldt, C.1    Laptev, I.2    Caputo, B.3
  • 23
    • 33749993686 scopus 로고    scopus 로고
    • Conditional models for contextual human motion recognition
    • 2
    • C. Sminchisescu, A. Kanaujia, and D. Metaxas. Conditional models for contextual human motion recognition. CVIU, 2006. 2
    • (2006) CVIU
    • Sminchisescu, C.1    Kanaujia, A.2    Metaxas, D.3
  • 25
    • 77955989063 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • 5
    • A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In CVPR, 2010. 5
    • (2010) CVPR
    • Vedaldi, A.1    Zisserman, A.2
  • 27
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • 6
    • H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC, 2009. 6
    • (2009) BMVC
    • Wang, H.1    Ullah, M.M.2    Kläser, A.3    Laptev, I.4    Schmid, C.5
  • 28
    • 84866648459 scopus 로고    scopus 로고
    • Human action recognition by semilatent topic models
    • 2
    • Y. Wang and G. Mori. Human action recognition by semilatent topic models. IEEE TPAMI, 2009. 2
    • (2009) IEEE TPAMI
    • Wang, Y.1    Mori, G.2
  • 29
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural svms with latent variables
    • 3, 4
    • C.-N. J. Yu and T. Joachims. Learning structural svms with latent variables. In ICML, 2009. 3, 4
    • (2009) ICML
    • Yu, C.-N.J.1    Joachims, T.2
  • 30
    • 77951160349 scopus 로고    scopus 로고
    • The concave-convex procedure
    • 4
    • A. L. Yuille. The concave-convex procedure. In NIPS, 2002. 4
    • (2002) NIPS
    • Yuille, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.