메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3562-3569

Action recognition by hierarchical sequence summarization

Author keywords

Action Recognition; Conditional Random Fields; Hierarchical Model

Indexed keywords

ACTION RECOGNITION; CONDITIONAL RANDOM FIELD; DISCRIMINATIVE FEATURES; FEATURE REPRESENTATION; HIERARCHICAL FEATURES; HIERARCHICAL MODEL; HIERARCHICAL SEQUENCES; SPATIO-TEMPORAL DYNAMICS;

EID: 84887335980     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.457     Document Type: Conference Paper
Times cited : (99)

References (28)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • 2, 3, 4
    • Y. Bengio. Learning deep architectures for AI. FTML, 2(1), 2009. 2, 3, 4
    • (2009) FTML , vol.2 , Issue.1
    • Bengio, Y.1
  • 2
    • 79958710654 scopus 로고    scopus 로고
    • Modeling hidden dynamics of multimodal cues for spontaneous agreement and disagreement recognition
    • 6
    • K. Bousmalis, L.-P. Morency, and M. Pantic. Modeling hidden dynamics of multimodal cues for spontaneous agreement and disagreement recognition. In FG, 2011. 6
    • (2011) FG
    • Bousmalis, K.1    Morency, L.-P.2    Pantic, M.3
  • 3
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graphbased image segmentation
    • 2, 4
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. IJCV, 59(2), 2004. 2, 4
    • (2004) IJCV , vol.59 , Issue.2
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 5
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 2
    • G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. NECO, 18(7), 2006. 2
    • (2006) NECO , vol.18 , Issue.7
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 6
    • 84866691616 scopus 로고    scopus 로고
    • Learning hierarchical representations for face verification with convolutional deep belief networks
    • 2
    • G. B. Huang, H. Lee, and E. G. Learned-Miller. Learning hierarchical representations for face verification with convolutional deep belief networks. In CVPR, 2012. 2
    • (2012) CVPR
    • Huang, G.B.1    Lee, H.2    Learned-Miller, E.G.3
  • 7
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • 1
    • P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials for enforcing label consistency. IJCV, 82, 2009. 1
    • (2009) IJCV , vol.82
    • Kohli, P.1    Ladicky, L.2    Torr, P.H.S.3
  • 8
    • 77955993558 scopus 로고    scopus 로고
    • Learning a hierarchy of discriminative space-time neighborhood features for human action recognition
    • 2
    • A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In CVPR, 2010. 2
    • (2010) CVPR
    • Kovashka, A.1    Grauman, K.2
  • 9
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • 2
    • I. Laptev. On space-time interest points. IJCV, 64(2-3), 2005. 2
    • (2005) IJCV , vol.64 , Issue.2-3
    • Laptev, I.1
  • 11
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 1
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 1
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 12
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • 1, 2, 4
    • Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011. 1, 2, 4
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 13
    • 34948829111 scopus 로고    scopus 로고
    • A hierarchical model of shape and appearance for human action classification
    • 2
    • J. C. Niebles and L. Fei-Fei. A hierarchical model of shape and appearance for human action classification. In CVPR, 2007. 2
    • (2007) CVPR
    • Niebles, J.C.1    Fei-Fei, L.2
  • 15
    • 84863373241 scopus 로고    scopus 로고
    • Conditional neural fields
    • 2, 6
    • J. Peng, L. Bo, and J. Xu. Conditional neural fields. In NIPS, 2009. 2, 6
    • (2009) NIPS
    • Peng, J.1    Bo, L.2    Xu, J.3
  • 17
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • 1
    • M. Ranzato, J. Susskind, V. Mnih, and G. E. Hinton. On deep generative models with applications to recognition. In CVPR, 2011. 1
    • (2011) CVPR
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.E.4
  • 18
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep boltzmann machines
    • 2
    • R. Salakhutdinov and G. E. Hinton. An efficient learning procedure for deep boltzmann machines. NECO, 24(8), 2012. 2
    • (2012) NECO , vol.24 , Issue.8
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 19
    • 77956002956 scopus 로고    scopus 로고
    • Sufficient dimension reduction for visual sequence classification
    • 6
    • A. Shyr, R. Urtasun, and M. I. Jordan. Sufficient dimension reduction for visual sequence classification. In CVPR, 2010. 6
    • (2010) CVPR
    • Shyr, A.1    Urtasun, R.2    Jordan, M.I.3
  • 20
    • 79958697762 scopus 로고    scopus 로고
    • Tracking body and hands for gesture recognition: Natops aircraft handling signals database
    • 6, 8
    • Y. Song, D. Demirdjian, and R. Davis. Tracking body and hands for gesture recognition: Natops aircraft handling signals database. In FG, 2011. 6, 8
    • (2011) FG
    • Song, Y.1    Demirdjian, D.2    Davis, R.3
  • 21
    • 84866720929 scopus 로고    scopus 로고
    • Multi-view latent variable discriminative models for action recognition
    • 6
    • Y. Song, L.-P. Morency, and R. Davis. Multi-view latent variable discriminative models for action recognition. In CVPR, 2012. 6
    • (2012) CVPR
    • Song, Y.1    Morency, L.-P.2    Davis, R.3
  • 22
    • 84870230742 scopus 로고    scopus 로고
    • Multimodal human behavior analysis: Learning correlation and interaction across modalities
    • 6
    • Y. Song, L.-P. Morency, and R. Davis. Multimodal human behavior analysis: learning correlation and interaction across modalities. In ICMI, 2012. 6
    • (2012) ICMI
    • Song, Y.1    Morency, L.-P.2    Davis, R.3
  • 23
    • 70450214829 scopus 로고    scopus 로고
    • Hierarchical spatio-temporal context modeling for action recognition
    • 2
    • J. Sun, X. Wu, S. Yan, L. F. Cheong, T.-S. Chua, and J. Li. Hierarchical spatio-temporal context modeling for action recognition. In CVPR, 2009. 2
    • (2009) CVPR
    • Sun, J.1    Wu, X.2    Yan, S.3    Cheong, L.F.4    Chua, T.-S.5    Li, J.6
  • 24
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • 2
    • K. Tang, F.-F. Li, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012. 2
    • (2012) CVPR
    • Tang, K.1    Li, F.-F.2    Koller, D.3
  • 25
    • 77949355561 scopus 로고    scopus 로고
    • Canal9: A database of political debates for analysis of social interactions
    • 6
    • A. Vinciarelli, A. Dielmann, S. Favre, and H. Salamin. Canal9: A database of political debates for analysis of social interactions. In ACII, 2009. 6
    • (2009) ACII
    • Vinciarelli, A.1    Dielmann, A.2    Favre, S.3    Salamin, H.4
  • 26
    • 80052885961 scopus 로고    scopus 로고
    • Action recognition with multiscale spatio-temporal contexts
    • 2
    • J. Wang, Z. Chen, and Y. Wu. Action recognition with multiscale spatio-temporal contexts. In CVPR, 2011. 2
    • (2011) CVPR
    • Wang, J.1    Chen, Z.2    Wu, Y.3
  • 27
    • 79957467077 scopus 로고    scopus 로고
    • Hidden part models for human action recognition: Probabilistic versus max margin
    • 2
    • Y. Wang and G. Mori. Hidden part models for human action recognition: Probabilistic versus max margin. PAMI, 33(7), 2011. 2
    • (2011) PAMI , vol.33 , Issue.7
    • Wang, Y.1    Mori, G.2
  • 28
    • 79959828814 scopus 로고    scopus 로고
    • Deep-structured hidden conditional random fields for phonetic recognition
    • 2
    • D. Yu and L. Deng. Deep-structured hidden conditional random fields for phonetic recognition. In INTERSPEECH, 2010. 2
    • (2010) INTERSPEECH
    • Yu, D.1    Deng, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.