메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 961-970

ActivityNet: A large-scale video benchmark for human activity understanding

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER VISION; GESTURE RECOGNITION; MOTION ESTIMATION;

EID: 84959216468     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298698     Document Type: Conference Paper
Times cited : (2644)

References (43)
  • 2
    • 84911448580 scopus 로고    scopus 로고
    • 2d human pose estimation: New benchmark and state of the art analysis
    • June
    • M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In CVPR, June 2014
    • (2014) CVPR
    • Andriluka, M.1    Pishchulin, L.2    Gehler, P.3    Schiele, B.4
  • 3
    • 85026924966 scopus 로고    scopus 로고
    • Trajectory-based fisher kernel representation for action recognition in videos
    • I. Atmosukarto, B. Ghanem, and N. Ahuja. Trajectory-based fisher kernel representation for action recognition in videos. In ICPR. IEEE, 2012
    • (2012) ICPR. IEEE
    • Atmosukarto, I.1    Ghanem, B.2    Ahuja, N.3
  • 7
    • 84959219316 scopus 로고    scopus 로고
    • FrameNet
    • FrameNet. http://framenet. icsi. berkeley. edu
  • 12
    • 85026928102 scopus 로고    scopus 로고
    • Camera motion and surrounding scene appearance as context for action recognition
    • F. C. Heilbron, A. Thabet, J. C. Niebles, and B. Ghanem. Camera motion and surrounding scene appearance as context for action recognition. In ACCV, 2014
    • (2014) ACCV
    • Heilbron, F.C.1    Thabet, A.2    Niebles, J.C.3    Ghanem, B.4
  • 13
    • 79958737093 scopus 로고    scopus 로고
    • Object, scene and actions: Combining multiple features for human action recognition
    • N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions: Combining multiple features for human action recognition. In ECCV, 2010
    • (2010) ECCV
    • Ikizler-Cinbis, N.1    Sclaroff, S.2
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
  • 21
    • 84911386198 scopus 로고    scopus 로고
    • Discriminative hierarchi-cal modeling of spatio-temporally composable human activ-ities
    • I. Lillo, A. Soto, and J. C. Niebles. Discriminative hierarchi-cal modeling of spatio-temporally composable human activ-ities. In CVPR, 2014
    • (2014) CVPR
    • Lillo, I.1    Soto, A.2    Niebles, J.C.3
  • 23
    • 84976702763 scopus 로고
    • WordNet: A Lexical Database for English
    • G. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM, 38:39-41, 1995
    • (1995) Communications of the ACM , vol.38 , pp. 39-41
    • Miller, G.A.1
  • 24
    • 80052874353 scopus 로고    scopus 로고
    • Modeling tempo-ral structure of decomposable motion segments for activity classification
    • J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling tempo-ral structure of decomposable motion segments for activity classification. In ECCV, 2010
    • (2010) ECCV
    • Niebles, J.C.1    Chen, C.-W.2    Fei-Fei, L.3
  • 27
    • 84947130265 scopus 로고    scopus 로고
    • Action recognition with stacked fisher vectors
    • X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV, 2014
    • (2014) ECCV
    • Peng, X.1    Zou, C.2    Qiao, Y.3    Peng, Q.4
  • 28
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010
    • (2010) ECCV
    • Perronnin, F.1    Sánchez, J.2    Mensink, T.3
  • 29
    • 84908701436 scopus 로고    scopus 로고
    • Fine-grained activity recognition with holistic and pose based features
    • X. Jiang, J. Hornegger, and R. Koch, editors. Springer International Publishing
    • L. Pishchulin, M. Andriluka, and B. Schiele. Fine-grained activity recognition with holistic and pose based features. In X. Jiang, J. Hornegger, and R. Koch, editors, Pattern Recog-nition, volume 8753 of Lecture Notes in Computer Science, pages 678-689. Springer International Publishing, 2014
    • (2014) Pattern Recog-nition, Volume 8753 of Lecture Notes in Computer Science , pp. 678-689
    • Pishchulin, L.1    Andriluka, M.2    Schiele, B.3
  • 30
    • 51949084792 scopus 로고    scopus 로고
    • Action Mach a spatio-temporal maximum average correlation height filter for action recognition
    • M. Rodriguez, J. Ahmed, and M. Shah. Action Mach a spatio-temporal maximum average correlation height filter for action recognition. In CVPR, 2008
    • (2008) CVPR
    • Rodriguez, M.1    Ahmed, J.2    Shah, M.3
  • 31
    • 84866710901 scopus 로고    scopus 로고
    • A database for fine grained activity detection of cooking activ-ities
    • M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity detection of cooking activ-ities. In CVPR, 2012
    • (2012) CVPR
    • Rohrbach, M.1    Amin, S.2    Andriluka, M.3    Schiele, B.4
  • 33
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local SVM approach. In ICPR, 2004
    • (2004) ICPR
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3
  • 34
    • 84898827877 scopus 로고    scopus 로고
    • Combining the right features for complex event recognition
    • K. D. Tang, B. Yao, L. Fei-Fei, and D. Koller. Combining the right features for complex event recognition. In ICCV, 2013
    • (2013) ICCV
    • Tang, K.D.1    Yao, B.2    Fei-Fei, L.3    Koller, D.4
  • 37
    • 84933502304 scopus 로고    scopus 로고
    • U. S. Department of Labor
    • U. S. Department of Labor. American time use survey. http://www. bls. gov/tus/, 2013
    • (2013) American Time Use Survey
  • 39
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action Recognition with Improved Trajectories. In ICCV, 2013
    • (2013) ICCV
    • Wang, H.1    Schmid, C.2
  • 41
    • 84898783696 scopus 로고    scopus 로고
    • Concurrent action detection with structural prediction
    • P. Wei, N. Zheng, Y. Zhao, and S.-C. Zhu. Concurrent action detection with structural prediction. In ICCV, 2013
    • (2013) ICCV
    • Wei, P.1    Zheng, N.2    Zhao, Y.3    Zhu, S.-C.4
  • 43
    • 85026924572 scopus 로고    scopus 로고
    • YouTube statistics
    • YouTube statistics. http://www. youtube. com/yt/press/statistics. html, 2015.
    • (2015)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.