메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2555-2562

Better exploiting motion for better action recognition

Author keywords

action recognition; affine motion; kinematic features; motion compensation; VLAD

Indexed keywords

ACTION RECOGNITION; ACTION RECOGNITION ALGORITHMS; AFFINE MOTION; CODING TECHNIQUES; MOTION CHARACTERISTICS; MOTION DESCRIPTORS; SPACE-TIME TRAJECTORY; VLAD;

EID: 84887398298     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.330     Document Type: Conference Paper
Times cited : (370)

References (32)
  • 1
    • 73849126715 scopus 로고    scopus 로고
    • Human action recognition in videos using kinematic features and multiple instance learning
    • Feb.
    • S. Ali and M. Shah. Human action recognition in videos using kinematic features and multiple instance learning. IEEE T-PAMI, 32(2):288-303, Feb. 2010.
    • (2010) IEEE T-PAMI , vol.32 , Issue.2 , pp. 288-303
    • Ali, S.1    Shah, M.2
  • 2
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • Sep.
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, Sep. 2010.
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 3
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Jun.
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, Jun. 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 4
    • 34948855444 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and ppearance
    • May
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and ppearance. In ECCV, May 2006.
    • (2006) ECCV
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 5
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • Oct.
    • P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In VS-PETS, Oct. 2005.
    • (2005) VS-PETS
    • Dollar, P.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 6
    • 84898405815 scopus 로고    scopus 로고
    • Recognizing activities with cluster-trees of tracklets
    • Sep.
    • A. Gaidon, Z. Harchaoui, and C. Schmid. Recognizing activities with cluster-trees of tracklets. In BMVC, Sep. 2012.
    • (2012) BMVC
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 7
    • 55149089052 scopus 로고    scopus 로고
    • A statistical video content recognition method using invariant features on object trajectories
    • A. Hervieu, P. Bouthemy, and J.-P. Le Cadre. A statistical video content recognition method using invariant features on object trajectories. IEEE T-CSVT, 18(11):1533-1543, 2008.
    • (2008) IEEE T-CSVT , vol.18 , Issue.11 , pp. 1533-1543
    • Hervieu, A.1    Bouthemy, P.2    Le Cadre, J.-P.3
  • 9
    • 84877645596 scopus 로고    scopus 로고
    • Trajectory-based modeling of human actions with motion reference points
    • Oct.
    • Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo. Trajectory-based modeling of human actions with motion reference points. In ECCV, Oct. 2012.
    • (2012) ECCV
    • Jiang, Y.-G.1    Dai, Q.2    Xue, X.3    Liu, W.4    Ngo, C.-W.5
  • 10
    • 84883368489 scopus 로고    scopus 로고
    • Motion interchange patterns for action recognition in unconstrained videos
    • Oct.
    • O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf. Motion interchange patterns for action recognition in unconstrained videos. In ECCV, Oct. 2012.
    • (2012) ECCV
    • Kliper-Gross, O.1    Gurovich, Y.2    Hassner, T.3    Wolf, L.4
  • 11
    • 84856682691 scopus 로고    scopus 로고
    • Hmdb: A large video database for human motion recognition
    • Nov.
    • H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A large video database for human motion recognition. In ICCV, Nov. 2011.
    • (2011) ICCV
    • Kuehne, H.1    Jhuang, H.2    Garrote, E.3    Poggio, T.4    Serre, T.5
  • 12
    • 0344551869 scopus 로고    scopus 로고
    • Space-time interest points
    • Oct.
    • I. Laptev and T. Lindeberg. Space-time interest points. In ICCV, Oct. 2003.
    • (2003) ICCV
    • Laptev, I.1    Lindeberg, T.2
  • 14
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • Jun.
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, Jun. 2011.
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 15
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Nov.
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, Nov. 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 18
    • 77953182943 scopus 로고    scopus 로고
    • Activity recognition using the velocity histories of tracked keypoints
    • Sep.
    • R. Messing, C. J. Pal, and H. A. Kautz. Activity recognition using the velocity histories of tracked keypoints. In ICCV, Sep. 2009.
    • (2009) ICCV
    • Messing, R.1    Pal, C.J.2    Kautz, H.A.3
  • 19
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • Sep.
    • J. C. Niebles, C.-W. Chen, and F.-F. Li. Modeling temporal structure of decomposable motion segments for activity classification. In ECCV, Sep. 2010.
    • (2010) ECCV
    • Niebles, J.C.1    Chen, C.-W.2    Li, F.-F.3
  • 20
    • 0029489292 scopus 로고
    • Robust multiresolution estimation of parametric motion models
    • Dec.
    • J.-M. Odobez and P. Bouthemy. Robust multiresolution estimation of parametric motion models. Jal of Vis. Comm. and Image Representation, 6(4):348-365, Dec. 1995.
    • (1995) Jal of Vis. Comm. and Image Representation , vol.6 , Issue.4 , pp. 348-365
    • Odobez, J.-M.1    Bouthemy, P.2
  • 21
    • 33750311690 scopus 로고    scopus 로고
    • Recognition of dynamic video contents with global probabilistic models of visual motion
    • G. Piriou, P. Bouthemy, and J.-F. Yao. Recognition of dynamic video contents with global probabilistic models of visual motion. IEEE T-IP, 15(11):3417-3430, 2006.
    • (2006) IEEE T-IP , vol.15 , Issue.11 , pp. 3417-3430
    • Piriou, G.1    Bouthemy, P.2    Yao, J.-F.3
  • 22
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • Jun.
    • S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. In CVPR, Jun. 2012.
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.J.2
  • 23
    • 0031139628 scopus 로고    scopus 로고
    • Local grayvalue invariants for image retrieval
    • May
    • C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE T-PAMI, 19(5):530-534, May 1997.
    • (1997) IEEE T-PAMI , vol.19 , Issue.5 , pp. 530-534
    • Schmid, C.1    Mohr, R.2
  • 24
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • Oct.
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In ICCV, pages 1470-1477, Oct. 2003.
    • (2003) ICCV , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 25
    • 70450214829 scopus 로고    scopus 로고
    • Hierarchical spatio-temporal context modeling for action recognition
    • Jun.
    • J. Sun, X. Wu, S. Yan, L. F. Cheong, T.-S. Chua, and J. Li. Hierarchical spatio-temporal context modeling for action recognition. In CVPR, Jun. 2009.
    • (2009) CVPR
    • Sun, J.1    Wu, X.2    Yan, S.3    Cheong, L.F.4    Chua, T.-S.5    Li, J.6
  • 26
    • 84898475671 scopus 로고    scopus 로고
    • Feature tracking and motion compensation for action recognition
    • Sep.
    • H. Uemura, S. Ishikawa, and K. Mikolajczyk. Feature tracking and motion compensation for action recognition. In BMVC, Sep. 2008.
    • (2008) BMVC
    • Uemura, H.1    Ishikawa, S.2    Mikolajczyk, K.3
  • 27
    • 84898428599 scopus 로고    scopus 로고
    • Improving bag-offeatures action recognition with non-local cues
    • Sep.
    • M. M. Ullah, S. N. Parizi, and I. Laptev. Improving bag-offeatures action recognition with non-local cues. In BMVC, Sep. 2010.
    • (2010) BMVC
    • Ullah, M.M.1    Parizi, S.N.2    Laptev, I.3
  • 28
    • 84887398686 scopus 로고    scopus 로고
    • Saliency-based space-variant descriptor sampling for action recognition
    • Oct.
    • E. Vig, M. Dorr, and D. Cox. Saliency-based space-variant descriptor sampling for action recognition. In ECCV, Oct. 2012.
    • (2012) ECCV
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 29
    • 80052877143 scopus 로고    scopus 로고
    • Action recognition by dense trajectories
    • Jun.
    • H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recognition by dense trajectories. In CVPR, Jun. 2011.
    • (2011) CVPR
    • Wang, H.1    Kläser, A.2    Schmid, C.3    Liu, C.-L.4
  • 30
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • Sep.
    • H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC, Sep. 2009.
    • (2009) BMVC
    • Wang, H.1    Ullah, M.M.2    Kläser, A.3    Laptev, I.4    Schmid, C.5
  • 31
    • 70450196950 scopus 로고    scopus 로고
    • An efficient dense and scale-invariant spatio-temporal interest point detector
    • Oct.
    • G. Willems, T. Tuytelaars, and L. J. V. Gool. An efficient dense and scale-invariant spatio-temporal interest point detector. In ECCV, Oct. 2008.
    • (2008) ECCV
    • Willems, G.1    Tuytelaars, T.2    Gool, L.J.V.3
  • 32
    • 84863082785 scopus 로고    scopus 로고
    • Action recognition in videos acquired by a moving camera using motion decomposition of lagrangian particle trajectories
    • Nov.
    • S. Wu, O. Oreifej, and M. Shah. Action recognition in videos acquired by a moving camera using motion decomposition of lagrangian particle trajectories. In ICCV, Nov. 2011.
    • (2011) ICCV
    • Wu, S.1    Oreifej, O.2    Shah, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.