메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5600-5609

Bottom-up and top-down reasoning with hierarchical rectified Gaussians

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; OPTIMIZATION; QUADRATIC PROGRAMMING; RECURRENT NEURAL NETWORKS;

EID: 84986266804     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.604     Document Type: Conference Paper
Times cited : (129)

References (56)
  • 1
    • 84911448580 scopus 로고    scopus 로고
    • 2d human pose estimation: New benchmark and state of the art analysis
    • M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose estimation: New benchmark and state of the art analysis. In CVPR, 2014.
    • (2014) CVPR
    • Andriluka, M.1    Pishchulin, L.2    Gehler, P.3    Schiele, B.4
  • 4
    • 0029093324 scopus 로고
    • Recurrent excitation in neocortical circuits
    • R. J. Douglas, C. Koch, M. Mahowald, K. Martin, and H. H. Suarez. Recurrent excitation in neocortical circuits. Science, 269 (5226): 981-985, 1995.
    • (1995) Science , vol.269 , Issue.5226 , pp. 981-985
    • Douglas, R.J.1    Koch, C.2    Mahowald, M.3    Martin, K.4    Suarez, H.H.5
  • 5
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained partbased models
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. PAMI, 32 (9): 1627-1645, 2010.
    • (2010) PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 6
    • 84911431598 scopus 로고    scopus 로고
    • Occlusion coherence: Localizing occluded faces with a hierarchical deformable part model
    • G. Ghiasi and C. C. Fowlkes. Occlusion coherence: Localizing occluded faces with a hierarchical deformable part model. In CVPR, pages 1899-1906, 2014.
    • (2014) CVPR , pp. 1899-1906
    • Ghiasi, G.1    Fowlkes, C.C.2
  • 7
    • 84984869559 scopus 로고    scopus 로고
    • Using segmentation to predict the absense of occluded parts
    • G. Ghiasi and C. C. Fowlkes. Using segmentation to predict the absense of occluded parts. In BMVC, 2015.
    • (2015) BMVC
    • Ghiasi, G.1    Fowlkes, C.C.2
  • 8
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • IEEE
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587. IEEE, 2014.
    • (2014) CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 10
    • 84887375411 scopus 로고    scopus 로고
    • Articulated pose estimation using discriminative armlet classifiers
    • G. Gkioxari, P. Arbeláez, L. Bourdev, and J. Malik. Articulated pose estimation using discriminative armlet classifiers. In CVPR, 2013.
    • (2013) CVPR
    • Gkioxari, G.1    Arbeláez, P.2    Bourdev, L.3    Malik, J.4
  • 11
    • 0029727454 scopus 로고    scopus 로고
    • Learning task-dependent distributed representations by backpropagation through structure
    • IEEE
    • C. Goller and A. Kuchler. Learning task-dependent distributed representations by backpropagation through structure. In ICNN, volume 1, pages 347-352. IEEE, 1996.
    • (1996) ICNN , vol.1 , pp. 347-352
    • Goller, C.1    Kuchler, A.2
  • 15
    • 79959347463 scopus 로고    scopus 로고
    • Transforming auto-encoders
    • Springer
    • G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In ICANN, pages 44-51. Springer, 2011.
    • (2011) ICANN , pp. 44-51
    • Hinton, G.E.1    Krizhevsky, A.2    Wang, S.D.3
  • 16
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786): 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 17
    • 0037028040 scopus 로고    scopus 로고
    • View from the top: Hierarchies and reverse hierarchies in the visual system
    • S. Hochstein and M. Ahissar. View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36 (5): 791-804, 2002.
    • (2002) Neuron , vol.36 , Issue.5 , pp. 791-804
    • Hochstein, S.1    Ahissar, M.2
  • 18
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 19
    • 0033103652 scopus 로고    scopus 로고
    • Attention modulates contextual influences in the primary visual cortex of alert monkeys
    • M. Ito and C. D. Gilbert. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron, 22 (3): 593-604, 1999.
    • (1999) Neuron , vol.22 , Issue.3 , pp. 593-604
    • Ito, M.1    Gilbert, C.D.2
  • 20
    • 33845568397 scopus 로고    scopus 로고
    • Context and hierarchy in a probabilistic image model
    • Y. Jin and S. Geman. Context and hierarchy in a probabilistic image model. In CVPR, 2006.
    • (2006) CVPR
    • Jin, Y.1    Geman, S.2
  • 22
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 23
    • 0028867946 scopus 로고
    • Topographical representations of mental images in primary visual cortex
    • S. M. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert. Topographical representations of mental images in primary visual cortex. Nature, 378 (6556): 496-498, 1995.
    • (1995) Nature , vol.378 , Issue.6556 , pp. 496-498
    • Kosslyn, S.M.1    Thompson, W.L.2    Kim, I.J.3    Alpert, N.M.4
  • 24
    • 84856655003 scopus 로고    scopus 로고
    • Annotated facial landmarks in the wild: A large-scale, realworld database for facial landmark localization
    • IEEE
    • M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof. Annotated facial landmarks in the wild: A large-scale, realworld database for facial landmark localization. In ICCV Workshops, pages 2144-2151. IEEE, 2011.
    • (2011) ICCV Workshops , pp. 2144-2151
    • Köstinger, M.1    Wohlhart, P.2    Roth, P.M.3    Bischof, H.4
  • 25
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 27
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 28
    • 0042565834 scopus 로고    scopus 로고
    • Hierarchical Bayesian inference in the visual cortex
    • T. S. Lee and D. Mumford. Hierarchical Bayesian inference in the visual cortex. JOSA A, 20 (7): 1434-1448, 2003.
    • (2003) JOSA A , vol.20 , Issue.7 , pp. 1434-1448
    • Lee, T.S.1    Mumford, D.2
  • 29
    • 84945230598 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR. IEEE, 2015.
    • (2015) CVPR. IEEE
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 30
    • 84937874835 scopus 로고    scopus 로고
    • Do convnets learn correspondence
    • J. L. Long, N. Zhang, and T. Darrell. Do convnets learn correspondence In NIPS, pages 1601-1609, 2014.
    • (2014) NIPS , pp. 1601-1609
    • Long, J.L.1    Zhang, N.2    Darrell, T.3
  • 32
    • 79959353548 scopus 로고    scopus 로고
    • Stacked convolutional auto-encoders for hierarchical feature extraction
    • Springer
    • J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-encoders for hierarchical feature extraction. In ICANN, pages 52-59. Springer, 2011.
    • (2011) ICANN , pp. 52-59
    • Masci, J.1    Meier, U.2    Cireşan, D.3    Schmidhuber, J.4
  • 33
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 36
    • 84862286946 scopus 로고    scopus 로고
    • Deep boltzmann machines
    • R. Salakhutdinov and G. E. Hinton. Deep boltzmann machines. In AISTATS, pages 448-455, 2009.
    • (2009) AISTATS , pp. 448-455
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 37
    • 84887370243 scopus 로고    scopus 로고
    • Modec: Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Sapp, B.1    Taskar, B.2
  • 38
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 39
    • 84862911217 scopus 로고    scopus 로고
    • The rectified Gaussian distribution
    • N. D. Socci, D. D. Lee, and H. Sebastian Seung. The rectified Gaussian distribution. NIPS, pages 350-356, 1998.
    • (1998) NIPS , pp. 350-356
    • Socci, N.D.1    Lee, D.D.2    Sebastian Seung, H.3
  • 40
    • 80053438267 scopus 로고    scopus 로고
    • Parsing natural scenes and natural language with recursive neural networks
    • R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and natural language with recursive neural networks. In ICML, pages 129-136, 2011.
    • (2011) ICML , pp. 129-136
    • Socher, R.1    Lin, C.C.2    Manning, C.3    Ng, A.Y.4
  • 41
    • 84883148756 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In AISTATS, 2011.
    • (2011) AISTATS
    • Stoyanov, V.1    Ropson, A.2    Eisner, J.3
  • 48
    • 0035235413 scopus 로고    scopus 로고
    • Is it a bird is it a plane. Ultra-rapid visual categorisation of natural and artifactual objects
    • R. VanRullen and S. J. Thorpe. Is it a bird is it a plane ultra-rapid visual categorisation of natural and artifactual objects. Perception-London, 30 (6): 655-668, 2001.
    • (2001) Perception-London , vol.30 , Issue.6 , pp. 655-668
    • VanRullen, R.1    Thorpe, S.J.2
  • 49
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11: 3371-3408, 2010.
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 50
    • 84973896892 scopus 로고    scopus 로고
    • Robust facial landmark detection under significant head poses and occlusion
    • Y. Wu and Q. Ji. Robust facial landmark detection under significant head poses and occlusion. In ICCV, 2015.
    • (2015) ICCV
    • Wu, Y.1    Ji, Q.2
  • 52
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • IEEE
    • Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR, pages 1385-1392. IEEE, 2011.
    • (2011) CVPR , pp. 1385-1392
    • Yang, Y.1    Ramanan, D.2
  • 54
    • 84906348918 scopus 로고    scopus 로고
    • Facial landmark detection by deep multi-task learning
    • Springer
    • Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multi-task learning. In Computer Vision-ECCV 2014, pages 94-108. Springer, 2014.
    • (2014) Computer Vision-ECCV 2014 , pp. 94-108
    • Zhang, Z.1    Luo, P.2    Loy, C.C.3    Tang, X.4
  • 55
    • 80051550318 scopus 로고    scopus 로고
    • Recursive compositional models for vision: Description and review of recent work
    • L. L. Zhu, Y. Chen, and A. Yuille. Recursive compositional models for vision: Description and review of recent work. Journal of Mathematical Imaging and Vision, 41 (1-2): 122-146, 2011.
    • (2011) Journal of Mathematical Imaging and Vision , vol.41 , Issue.1-2 , pp. 122-146
    • Zhu, L.L.1    Chen, Y.2    Yuille, A.3
  • 56
    • 84866667680 scopus 로고    scopus 로고
    • Face detection, pose estimation, and landmark localization in the wild
    • X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. In CVPR, 2012.
    • (2012) CVPR
    • Zhu, X.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.