메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4706-4714

Full flow: Optical flow estimation by global optimization over regular grids

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTATIONAL COMPLEXITY; COMPUTATIONAL EFFICIENCY; COMPUTER VISION; GLOBAL OPTIMIZATION; MAPPING; OPTICAL FLOWS;

EID: 84986294573     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.509     Document Type: Conference Paper
Times cited : (196)

References (47)
  • 2
    • 84973882641 scopus 로고    scopus 로고
    • Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation
    • C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. In ICCV, 2015.
    • (2015) ICCV
    • Bailer, C.1    Taetz, B.2    Stricker, D.3
  • 4
    • 0029772518 scopus 로고    scopus 로고
    • The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields
    • M. J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1), 1996.
    • (1996) Computer Vision and Image Understanding , vol.63 , Issue.1
    • Black, M.J.1    Anandan, P.2
  • 6
    • 18844364899 scopus 로고    scopus 로고
    • High accuracy optical flow estimation based on a theory for warping
    • T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In ECCV, 2004.
    • (2004) ECCV
    • Brox, T.1    Bruhn, A.2    Papenberg, N.3    Weickert, J.4
  • 7
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI, 33(3), 2011.
    • (2011) PAMI , vol.33 , Issue.3
    • Brox, T.1    Malik, J.2
  • 8
    • 84887338408 scopus 로고    scopus 로고
    • A naturalistic open source movie for optical flow evaluation
    • D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
    • (2012) ECCV
    • Butler, D.J.1    Wulff, J.2    Stanley, G.B.3    Black, M.J.4
  • 9
    • 84911458813 scopus 로고    scopus 로고
    • Fast MRF optimization with application to depth reconstruction
    • Q. Chen and V. Koltun. Fast MRF optimization with application to depth reconstruction. In CVPR, 2014.
    • (2014) CVPR
    • Chen, Q.1    Koltun, V.2
  • 10
    • 84973912636 scopus 로고    scopus 로고
    • Robust nonrigid registration by convex optimization
    • Q. Chen and V. Koltun. Robust nonrigid registration by convex optimization. In ICCV, 2015.
    • (2015) ICCV
    • Chen, Q.1    Koltun, V.2
  • 11
    • 84887336889 scopus 로고    scopus 로고
    • Large displacement optical flow from nearest neighbor fields
    • Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y.Wu. Large displacement optical flow from nearest neighbor fields. In CVPR, 2013.
    • (2013) CVPR
    • Chen, Z.1    Jin, H.2    Lin, Z.3    Cohen, S.4    Wu, Y.5
  • 12
    • 84893443026 scopus 로고    scopus 로고
    • FPGA acceleration of Markov random field TRW-S inference for stereo matching
    • J. Choi and R. A. Rutenbar. FPGA acceleration of Markov random field TRW-S inference for stereo matching. In MEMCODE, 2013.
    • (2013) MEMCODE
    • Choi, J.1    Rutenbar, R.A.2
  • 13
    • 38249019226 scopus 로고
    • Sequence comparison with mixed convex and concave costs
    • D. Eppstein. Sequence comparison with mixed convex and concave costs. J. Algorithms, 11(1), 1990.
    • (1990) J. Algorithms , vol.11 , Issue.1
    • Eppstein, D.1
  • 14
    • 33744951081 scopus 로고    scopus 로고
    • Efficient belief propagation for early vision
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision. IJCV, 70(1), 2006.
    • (2006) IJCV , vol.70 , Issue.1
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 17
    • 80052914866 scopus 로고    scopus 로고
    • TriangleFlow: Optical flow with triangulation-based higherorder likelihoods
    • B. Glocker, T. H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higherorder likelihoods. In ECCV, 2010.
    • (2010) ECCV
    • Glocker, B.1    Heibel, T.H.2    Navab, N.3    Kohli, P.4    Rother, C.5
  • 20
    • 84870232543 scopus 로고    scopus 로고
    • Global minimization of Markov random fields with applications to optical flow
    • T. Goldstein, X. Bresson, and S. Osher. Global minimization of Markov random fields with applications to optical flow. Inverse Problems and Imaging, 6(4), 2012.
    • (2012) Inverse Problems and Imaging , vol.6 , Issue.4
    • Goldstein, T.1    Bresson, X.2    Osher, S.3
  • 21
    • 0027807652 scopus 로고
    • Multimodal estimation of discontinuous optical flow using Markov random fields
    • F. Heitz and P. Bouthemy. Multimodal estimation of discontinuous optical flow using Markov random fields. PAMI, 15(12), 1993.
    • (1993) PAMI , vol.15 , Issue.12
    • Heitz, F.1    Bouthemy, P.2
  • 23
    • 84959236681 scopus 로고    scopus 로고
    • Optical flow with geometric occlusion estimation and fusion of multiple frames
    • R. Kennedy and C. J. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. In EMMCVPR, 2015.
    • (2015) EMMCVPR
    • Kennedy, R.1    Taylor, C.J.2
  • 24
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI, 28(10), 2006.
    • (2006) PAMI , vol.28 , Issue.10
    • Kolmogorov, V.1
  • 25
    • 79551518880 scopus 로고    scopus 로고
    • MRF energy minimization and beyond via dual decomposition
    • N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via dual decomposition. PAMI, 33(3), 2011.
    • (2011) PAMI , vol.33 , Issue.3
    • Komodakis, N.1    Paragios, N.2    Tziritas, G.3
  • 26
    • 0024175248 scopus 로고
    • Multigrid Bayesian estimation of image motion using stochastic relaxation
    • J. Konrad and E. Dubois. Multigrid Bayesian estimation of image motion using stochastic relaxation. In ICCV, 1988.
    • (1988) ICCV
    • Konrad, J.1    Dubois, E.2
  • 27
    • 77956004231 scopus 로고    scopus 로고
    • Optical flow estimation with adaptive convolution kernel prior on discrete framework
    • K. J. Lee, D. Kwon, I. D. Yun, and S. U. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. In CVPR, 2010.
    • (2010) CVPR
    • Lee, K.J.1    Kwon, D.2    Yun, I.D.3    Lee, S.U.4
  • 28
    • 77953812535 scopus 로고    scopus 로고
    • Fusion moves for Markov random field optimization
    • V. S. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion moves for Markov random field optimization. PAMI, 32(8), 2010.
    • (2010) PAMI , vol.32 , Issue.8
    • Lempitsky, V.S.1    Rother, C.2    Roth, S.3    Blake, A.4
  • 29
    • 84959203005 scopus 로고    scopus 로고
    • Object scene flow for autonomous vehicles
    • M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In CVPR, 2015.
    • (2015) CVPR
    • Menze, M.1    Geiger, A.2
  • 30
    • 84986312352 scopus 로고    scopus 로고
    • Discrete optimization for optical flow
    • M. Menze, C. Heipke, and A. Geiger. Discrete optimization for optical flow. In GCPR, 2015.
    • (2015) GCPR
    • Menze, M.1    Heipke, C.2    Geiger, A.3
  • 31
    • 21244491996 scopus 로고    scopus 로고
    • Motion segmentation using occlusions
    • A. S. Ogale, C. Fermüller, and Y. Aloimonos. Motion segmentation using occlusions. PAMI, 27(6), 2005.
    • (2005) PAMI , vol.27 , Issue.6
    • Ogale, A.S.1    Fermüller, C.2    Aloimonos, Y.3
  • 32
    • 84959237250 scopus 로고    scopus 로고
    • EpicFlow: Edge-preserving interpolation of correspondences for optical flow
    • J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-preserving interpolation of correspondences for optical flow. In CVPR, 2015.
    • (2015) CVPR
    • Revaud, J.1    Weinzaepfel, P.2    Harchaoui, Z.3    Schmid, C.4
  • 33
    • 84986328093 scopus 로고    scopus 로고
    • Optical flow with semantic segmentation and localized layers
    • L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical flow with semantic segmentation and localized layers. In CVPR, 2016.
    • (2016) CVPR
    • Sevilla-Lara, L.1    Sun, D.2    Jampani, V.3    Black, M.J.4
  • 36
    • 79955574321 scopus 로고    scopus 로고
    • Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics
    • M. V. Srinivasan. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiological Reviews, 91(2), 2011.
    • (2011) Physiological Reviews , vol.91 , Issue.2
    • Srinivasan, M.V.1
  • 37
    • 77953178803 scopus 로고    scopus 로고
    • Large displacement optical flow computation without warping
    • F. Steinbrücker, T. Pock, and D. Cremers. Large displacement optical flow computation without warping. In ICCV, 2009.
    • (2009) ICCV
    • Steinbrücker, F.1    Pock, T.2    Cremers, D.3
  • 38
  • 39
    • 84894901673 scopus 로고    scopus 로고
    • A quantitative analysis of current practices in optical flow estimation and the principles behind them
    • D. Sun, S. Roth, and M. J. Black. A quantitative analysis of current practices in optical flow estimation and the principles behind them. IJCV, 106(2), 2014.
    • (2014) IJCV , vol.106 , Issue.2
    • Sun, D.1    Roth, S.2    Black, M.J.3
  • 41
    • 84925311322 scopus 로고    scopus 로고
    • An evaluation of data costs for optical flow
    • C. Vogel, S. Roth, and K. Schindler. An evaluation of data costs for optical flow. In GCPR, 2013.
    • (2013) GCPR
    • Vogel, C.1    Roth, S.2    Schindler, K.3
  • 43
    • 0000644036 scopus 로고
    • Self-motion: Visual perception and visual control
    • Academic Press
    • W. H. Warren. Self-motion: Visual perception and visual control. In Perception of Space and Motion. Academic Press, 1995.
    • (1995) Perception of Space and Motion
    • Warren, W.H.1
  • 44
    • 84898830536 scopus 로고    scopus 로고
    • DeepFlow: Large displacement optical flow with deep matching
    • P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: Large displacement optical flow with deep matching. In ICCV, 2013.
    • (2013) ICCV
    • Weinzaepfel, P.1    Revaud, J.2    Harchaoui, Z.3    Schmid, C.4
  • 45
    • 84865609390 scopus 로고    scopus 로고
    • Motion detail preserving optical flow estimation
    • L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI, 34(9), 2012.
    • (2012) PAMI , vol.34 , Issue.9
    • Xu, L.1    Jia, J.2    Matsushita, Y.3
  • 46
    • 84959234821 scopus 로고    scopus 로고
    • Dense, accurate optical flow estimation with piecewise parametric model
    • J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. In CVPR, 2015.
    • (2015) CVPR
    • Yang, J.1    Li, H.2
  • 47
    • 84911384859 scopus 로고    scopus 로고
    • A principled approach for coarse-to-fine MAP inference
    • C. Zach. A principled approach for coarse-to-fine MAP inference. In CVPR, 2014.
    • (2014) CVPR
    • Zach, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.