-
3
-
-
84857855190
-
Random search for hyperparameter optimization
-
J. Bergstra and Y. Bengio. Random search for hyperparameter optimization. JMLR, 13 (1), 2012.
-
(2012)
JMLR
, vol.13
, Issue.1
-
-
Bergstra, J.1
Bengio, Y.2
-
4
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
J. Bergstra, D. Yamins, and D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In ICML, 2013.
-
(2013)
ICML
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.3
-
8
-
-
84855599508
-
Maximizing a monotone submodular function subject to a matroid constraint
-
G. Calinescu, C. Chekuri, M. Pal, and J. Vondrak. Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing, 40 (6), 2011.
-
(2011)
SIAM Journal on Computing
, vol.40
, Issue.6
-
-
Calinescu, G.1
Chekuri, C.2
Pal, M.3
Vondrak, J.4
-
9
-
-
85011791449
-
Cloud-based predictive modeling system and its application to asthma readmission prediction
-
R. Chen, H. Su, Y. Zhen, M. Khalilia, D. Hirsch, M. Thompson, T. Davis, Y. Peng, S. Lin, J. Tejedor-Sojo, E. Searles, and J. Sun. Cloud-based predictive modeling system and its application to asthma readmission prediction. In AMIA. AMIA, 2015.
-
(2015)
AMIA. AMIA
-
-
Chen, R.1
Su, H.2
Zhen, Y.3
Khalilia, M.4
Hirsch, D.5
Thompson, M.6
Davis, T.7
Peng, Y.8
Lin, S.9
Tejedor-Sojo, J.10
Searles, E.11
Sun, J.12
-
11
-
-
84982178398
-
-
Technical report, University of California Berkeley
-
D. Donoho. 50 years of Data Science. Technical report, University of California Berkeley, 2015.
-
(2015)
50 Years of Data Science
-
-
Donoho, D.1
-
12
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS workshop on Bayesian Optimization in Theory and Practice, 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization in Theory and Practice
-
-
Eggensperger, K.1
Feurer, M.2
Hutter, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.6
Leyton-Brown, K.7
-
13
-
-
84965128050
-
Efficient and robust automated machine learning
-
M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust automated machine learning. In NIPS, 2015.
-
(2015)
NIPS
-
-
Feurer, M.1
Klein, A.2
Eggensperger, K.3
Springenberg, J.4
Blum, M.5
Hutter, F.6
-
14
-
-
85007221118
-
Initializing Bayesian hyperparameter optimization via meta-learning
-
M. Feurer, T. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization via meta-learning. In AAAI, 2015.
-
(2015)
AAAI
-
-
Feurer, M.1
Springenberg, T.2
Hutter, F.3
-
16
-
-
84890011285
-
Efficiency for regularization parameter selection in penalized likelihood estimation of misspecified models
-
C. J. Flynn, C. M. Hurvich, and J. S. Simonoff. Efficiency for regularization parameter selection in penalized likelihood estimation of misspecified models. JASA, 108 (503), 2013.
-
(2013)
JASA
, vol.108
, Issue.503
-
-
Flynn, C.J.1
Hurvich, C.M.2
Simonoff, J.S.3
-
17
-
-
76749092270
-
The weka data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka data mining software: an update. ACM SIGKDD explorations newsletter, 11 (1), 2009.
-
(2009)
ACM SIGKDD Explorations Newsletter
, vol.11
, Issue.1
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
18
-
-
72949097899
-
Laplacian regularized d-optimal design for active learning and its application to image retrieval
-
X. He. Laplacian regularized d-optimal design for active learning and its application to image retrieval. Image Processing, IEEE Transactions on, 19 (1), 2010.
-
(2010)
Image Processing, IEEE Transactions on
, vol.19
, Issue.1
-
-
He, X.1
-
19
-
-
84907024756
-
Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization
-
J. C. Ho, J. Ghosh, and J. Sun. Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In KDD, 2014.
-
(2014)
KDD
-
-
Ho, J.C.1
Ghosh, J.2
Sun, J.3
-
20
-
-
80053160717
-
Portfolio allocation for Bayesian optimization
-
Citeseer
-
M. D. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In UAI. Citeseer, 2011.
-
(2011)
UAI
-
-
Hoffman, M.D.1
Brochu, E.2
De Freitas, N.3
-
21
-
-
84955451375
-
On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning
-
M. D. Hoffman, B. Shahriari, and N. de Freitas. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. In AISTATS, 2014.
-
(2014)
AISTATS
-
-
Hoffman, M.D.1
Shahriari, B.2
De Freitas, N.3
-
23
-
-
84897524603
-
Revisiting frank-wolfe: Projection-free sparse convex optimization
-
M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML, 2013.
-
(2013)
ICML
-
-
Jaggi, M.1
-
24
-
-
84908279482
-
Hyperoptsklearn: Automatic hyperparameter configuration for scikitlearn
-
B. Komer, J. Bergstra, and C. Eliasmith. Hyperoptsklearn: Automatic hyperparameter configuration for scikitlearn. In ICML workshop on AutoML, 2014.
-
(2014)
ICML Workshop on AutoML
-
-
Komer, B.1
Bergstra, J.2
Eliasmith, C.3
-
25
-
-
79960793022
-
Submodularity and its applications in optimized information gathering
-
A. Krause and C. Guestrin. Submodularity and its applications in optimized information gathering. TIST, 2 (4), 2011.
-
(2011)
TIST
, vol.2
, Issue.4
-
-
Krause, A.1
Guestrin, C.2
-
26
-
-
85015199015
-
Model selection management systems: The next frontier of advanced analytics
-
A. Kumar, R. McCann, J. Naughton, and J. M. Patel. Model selection management systems: The next frontier of advanced analytics. ACM SIGMOD Record, 2015.
-
(2015)
ACM SIGMOD Record
-
-
Kumar, A.1
McCann, R.2
Naughton, J.3
Patel, J.M.4
-
28
-
-
84891836073
-
Model selection principles in misspecified models
-
J. Lv and J. S. Liu. Model selection principles in misspecified models. JRSS-B, 76 (1), 2014.
-
(2014)
JRSS-B
, vol.76
, Issue.1
-
-
Lv, J.1
Liu, J.S.2
-
29
-
-
84963745941
-
Sequential pattern mining of electronic healthcare reimbursement claims: Experiences and challenges in uncovering how patients are treated by physicians
-
Oct
-
K. Malhotra, T. Hobson, S. Valkova, L. Pullum, and A. Ramanathan. Sequential pattern mining of electronic healthcare reimbursement claims: Experiences and challenges in uncovering how patients are treated by physicians. In Big Data, Oct 2015.
-
(2015)
Big Data
-
-
Malhotra, K.1
Hobson, T.2
Valkova, S.3
Pullum, L.4
Ramanathan, A.5
-
31
-
-
33749558210
-
Yale: Rapid prototyping for complex data mining tasks
-
I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid prototyping for complex data mining tasks. In KDD, 2006.
-
(2006)
KDD
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
Scholz, M.4
Euler, T.5
-
32
-
-
0342813049
-
The application of Bayesian methods for seeking the extremum
-
J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2 (117-129), 1978.
-
(1978)
Towards Global Optimization
, vol.2
, pp. 117-129
-
-
Mockus, J.1
Tiesis, V.2
Zilinskas, A.3
-
33
-
-
85162504694
-
Optimistic optimization of deterministic functions without the knowledge of its smoothness
-
R. Munos. Optimistic optimization of deterministic functions without the knowledge of its smoothness. In Advances in neural information processing systems, 2011.
-
(2011)
Advances in Neural Information Processing Systems
-
-
Munos, R.1
-
35
-
-
84899483965
-
Paramo: A parallel predictive modeling platform for healthcare analytic research using electronic health records
-
K. Ng, A. Ghoting, S. R. Steinhubl, W. F. Stewart, B. Malin, and J. Sun. Paramo: A parallel predictive modeling platform for healthcare analytic research using electronic health records. Journal of biomedical informatics, 48, 2014.
-
(2014)
Journal of Biomedical Informatics
, vol.48
-
-
Ng, K.1
Ghoting, A.2
Steinhubl, S.R.3
Stewart, W.F.4
Malin, B.5
Sun, J.6
-
36
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. JMLR, 12, 2011.
-
(2011)
JMLR
, pp. 12
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
39
-
-
84949985138
-
Taking the human out of the loop: A review of Bayesian optimization
-
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104 (1): 148-175, 2016.
-
(2016)
Proceedings of the IEEE
, vol.104
, Issue.1
, pp. 148-175
-
-
Shahriari, B.1
Swersky, K.2
Wang, Z.3
Adams, R.P.4
De Freitas, N.5
-
40
-
-
79953144587
-
Greedy sensor selection: Leveraging submodularity
-
M. Shamaiah, S. Banerjee, and H. Vikalo. Greedy sensor selection: Leveraging submodularity. In CDC, 2010.
-
(2010)
CDC
-
-
Shamaiah, M.1
Banerjee, S.2
Vikalo, H.3
-
41
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In NIPS, 2012.
-
(2012)
NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
42
-
-
84938920775
-
-
arXiv preprint arXiv: 1502. 05700
-
J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Ali, R. P. Adams, et al. Scalable Bayesian optimization using deep neural networks. arXiv preprint arXiv: 1502. 05700, 2015.
-
(2015)
Scalable Bayesian Optimization Using Deep Neural Networks
-
-
Snoek, J.1
Rippel, O.2
Swersky, K.3
Kiros, R.4
Satish, N.5
Sundaram, N.6
Patwary, M.7
Ali, M.8
Adams, R.P.9
-
44
-
-
85018371540
-
Auto-weka: Combined selection and hyperparameter optimization of classification algorithms
-
C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka: Combined selection and hyperparameter optimization of classification algorithms. In KDD, 2013.
-
(2013)
KDD
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
-
45
-
-
67650938640
-
An informational approach to the global optimization of expensive-toevaluate functions
-
J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimization of expensive-toevaluate functions. Journal of Global Optimization, 44 (4), 2009.
-
(2009)
Journal of Global Optimization
, vol.44
, Issue.4
-
-
Villemonteix, J.1
Vazquez, E.2
Walter, E.3
-
46
-
-
84896058897
-
Bayesian optimization in high dimensions via random embeddings
-
Citeseer
-
Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas. Bayesian optimization in high dimensions via random embeddings. In IJCAI. Citeseer, 2013.
-
(2013)
IJCAI
-
-
Wang, Z.1
Zoghi, M.2
Hutter, F.3
Matheson, D.4
De Freitas, N.5
-
48
-
-
0002644952
-
Maximum likelihood estimation of misspecified models
-
H. White. Maximum likelihood estimation of misspecified models. Econometrica, 1982.
-
(1982)
Econometrica
-
-
White, H.1
|