-
1
-
-
27844550205
-
Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
-
L. Wolf, and A. Shashua Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach The Journal of Machine Learning Research 6 2005 1855 1887
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
-
2
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th international conference on Machine learning, ACM, 2007, pp. 1151-1157.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, ACM
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
3
-
-
85135939782
-
Efficient and robust feature selection via joint?.2, 1-norms minimization
-
F. Nie, H. Huang, X. Cai, and C.H. Ding Efficient and robust feature selection via joint?.2, 1-norms minimization in: Advances in neural information processing systems 2010 1813 1821
-
(2010)
Advances in Neural Information Processing Systems
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.H.4
-
4
-
-
36749015551
-
Feature selection via least squares support feature machine
-
J. Li, Z. Chen, L. Wei, W. Xu, and G. Kou Feature selection via least squares support feature machine International Journal of Information Technology & Decision Making 6 04 2007 671 686
-
(2007)
International Journal of Information Technology & Decision Making
, vol.6
, Issue.4
, pp. 671-686
-
-
Li, J.1
Chen, Z.2
Wei, L.3
Xu, W.4
Kou, G.5
-
5
-
-
70449102559
-
Semi-supervised feature selection via spectral analysis
-
Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis., in: SDM, SIAM, 2007, pp. 641-646.
-
(2007)
SDM, SIAM
, pp. 641-646
-
-
Zhao, Z.1
Liu, H.2
-
6
-
-
77954565155
-
Discriminative semi-supervised feature selection via manifold regularization, Neural Networks
-
Z. Xu, I. King, M.R.-T. Lyu, and R. Jin Discriminative semi-supervised feature selection via manifold regularization, Neural Networks IEEE Transactions on 21 7 2010 1033 1047
-
(2010)
IEEE Transactions on
, vol.21
, Issue.7
, pp. 1033-1047
-
-
Xu, Z.1
King, I.2
Lyu, M.R.-T.3
Jin, R.4
-
7
-
-
84904262473
-
Proportional hybrid mechanism for population based feature selection algorithm
-
P. Wang, Y. Li, B. Chen, X. Hu, J. Yan, Y. Xia, and J. Yang Proportional hybrid mechanism for population based feature selection algorithm International Journal of Information Technology & Decision Making 2013 1 30
-
(2013)
International Journal of Information Technology & Decision Making
, pp. 1-30
-
-
Wang, P.1
Li, Y.2
Chen, B.3
Hu, X.4
Yan, J.5
Xia, Y.6
Yang, J.7
-
8
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2010, pp. 333-342.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
10
-
-
84881041271
-
L2, 1-norm regularized discriminative feature selection for unsupervised learning
-
Citeseer
-
Y. Yang, H.T. Shen, Z. Ma, Z. Huang, X. Zhou, l2, 1-norm regularized discriminative feature selection for unsupervised learning, in: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, Vol. 22, Citeseer, 2011, p. 1589.
-
(2011)
IJCAI Proceedings-International Joint Conference on Artificial Intelligence
, vol.22
, pp. 1589
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
-
11
-
-
84892150579
-
Bayesian feature selection for clustering problems
-
E.R. Hruschka, E.R. Hruschka Jr., T.F. Covões, and N.F. Ebecken Bayesian feature selection for clustering problems Journal of Information & Knowledge Management 5 04 2006 315 327
-
(2006)
Journal of Information & Knowledge Management
, vol.5
, Issue.4
, pp. 315-327
-
-
Hruschka, E.R.1
Hruschka, E.R.2
Covões, T.F.3
Ebecken, N.F.4
-
13
-
-
4344667429
-
A Bayesian approach to joint feature selection and classifier design, Pattern Analysis and Machine Intelligence
-
B. Krishnapuram, A. Harternink, L. Carin, and M.A. Figueiredo A bayesian approach to joint feature selection and classifier design, Pattern Analysis and Machine Intelligence IEEE Transactions on 26 9 2004 1105 1111
-
(2004)
IEEE Transactions on
, vol.26
, Issue.9
, pp. 1105-1111
-
-
Krishnapuram, B.1
Harternink, A.2
Carin, L.3
Figueiredo, M.A.4
-
14
-
-
79955444979
-
The fisher-markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data, Pattern Analysis and Machine Intelligence
-
Q. Cheng, H. Zhou, and J. Cheng The fisher-markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data, Pattern Analysis and Machine Intelligence IEEE Transactions on 33 6 2011 1217 1233
-
(2011)
IEEE Transactions on
, vol.33
, Issue.6
, pp. 1217-1233
-
-
Cheng, Q.1
Zhou, H.2
Cheng, J.3
-
15
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Advances in neural information processing systems, 2005, pp. 507-514.
-
(2005)
Advances in Neural Information Processing Systems
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
18
-
-
17644384367
-
Minimum redundancy feature selection from microarray gene expression data
-
C. Ding, and H. Peng Minimum redundancy feature selection from microarray gene expression data Journal of bioinformatics and computational biology 3 02 2005 185 205
-
(2005)
Journal of Bioinformatics and Computational Biology
, vol.3
, Issue.2
, pp. 185-205
-
-
Ding, C.1
Peng, H.2
-
19
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy Pattern Analysis and Machine Intelligence, IEEE Transactions on 27 8 2005 1226 1238
-
(2005)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
20
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Machine learning 46 1-3 2002 389 422
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
21
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
P. S. Bradley, O.L. Mangasarian, Feature selection via concave minimization and support vector machines., in: ICML, Vol. 98, 1998, pp. 82-90.
-
(1998)
ICML
, vol.98
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
22
-
-
0034592781
-
Data selection for support vector machine classifiers
-
G. Fung, O.L. Mangasarian, Data selection for support vector machine classifiers, in: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2000, pp. 64-70.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
, pp. 64-70
-
-
Fung, G.1
Mangasarian, O.L.2
-
23
-
-
14344249889
-
Feature selection, l 1 vs. 1 2 regularization, and rotational invariance
-
A. Y. Ng, Feature selection, l 1 vs. l 2 regularization, and rotational invariance, in: Proceedings of the twenty-first international conference on Machine learning, ACM, 2004, p. 78.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning, ACM
, pp. 78
-
-
Ng, A.Y.1
-
24
-
-
34547983091
-
Hybrid huberized support vector machines for microarray classification
-
L. Wang, J. Zhu, H. Zou, Hybrid huberized support vector machines for microarray classification, in: Proceedings of the 24th international conference on Machine learning, ACM, 2007, pp. 983-990.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, ACM
, pp. 983-990
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
25
-
-
34948865158
-
-
UC Berkeley, Tech. Rep
-
G. Obozinski, B. Taskar, M. Jordan, Multi-task feature selection, Statistics Department, UC Berkeley, Tech. Rep.
-
Multi-task Feature Selection, Statistics Department
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.3
-
28
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R.A. Fisher The use of multiple measurements in taxonomic problems Annals of eugenics 7 2 1936 179 188
-
(1936)
Annals of Eugenics
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.A.1
-
30
-
-
33144458972
-
Efficient and robust feature extraction by maximum margin criterion, Neural Networks
-
H. Li, T. Jiang, and K. Zhang Efficient and robust feature extraction by maximum margin criterion, Neural Networks IEEE Transactions on 17 1 2006 157 165
-
(2006)
IEEE Transactions on
, vol.17
, Issue.1
, pp. 157-165
-
-
Li, H.1
Jiang, T.2
Zhang, K.3
-
31
-
-
84893379490
-
Vector-valued multi-view semi-supervised learning for multi-label image classification, in: Proceedings of the 27th AAAI Conference on Artificial Intelligence
-
Y. Luo, D. Tao, C. Xu, and D. Li Vector-valued multi-view semi-supervised learning for multi-label image classification, in: Proceedings of the 27th AAAI Conference on Artificial Intelligence AAAI 2013 2013
-
(2013)
AAAI
, vol.2013
-
-
Luo, Y.1
Tao, D.2
Xu, C.3
Li, D.4
-
32
-
-
49049111209
-
Semi-supervised discriminant analysis
-
D. Cai, X. He, J. Han, Semi-supervised discriminant analysis, in: Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, IEEE, 2007, pp. 1-7.
-
(2007)
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference On, IEEE
, pp. 1-7
-
-
Cai, D.1
He, X.2
Han, J.3
-
33
-
-
84908211928
-
A convex formulation for semi-supervised multi-label feature selection
-
X. Chang, F. Nie, Y. Yang, H. Huang, A convex formulation for semi-supervised multi-label feature selection., in: AAAI, 2014, pp. 1171-1177.
-
(2014)
AAAI
, pp. 1171-1177
-
-
Chang, X.1
Nie, F.2
Yang, Y.3
Huang, H.4
-
34
-
-
84959493567
-
Clustering-guided sparse structural learning for unsupervised feature selection, Knowledge and Data Engineering
-
Z. Li, J. Liu, Y. Yang, X. Zhou, and H. Lu Clustering-guided sparse structural learning for unsupervised feature selection, Knowledge and Data Engineering IEEE Transactions on 26 9 2014 2138 2150
-
(2014)
IEEE Transactions on
, vol.26
, Issue.9
, pp. 2138-2150
-
-
Li, Z.1
Liu, J.2
Yang, Y.3
Zhou, X.4
Lu, H.5
-
35
-
-
33749255817
-
R 1-PCA: Rotational invariant l 1-norm principal component analysis for robust subspace factorization
-
C. Ding, D. Zhou, X. He, H. Zha, R 1-pca: rotational invariant l 1-norm principal component analysis for robust subspace factorization, in: Proceedings of the 23rd international conference on Machine learning, ACM, 2006, pp. 281-288.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning, ACM
, pp. 281-288
-
-
Ding, C.1
Zhou, D.2
He, X.3
Zha, H.4
-
36
-
-
34548583274
-
A tutorial on spectral clustering
-
U. Von Luxburg A tutorial on spectral clustering Statistics and computing 17 4 2007 395 416
-
(2007)
Statistics and Computing
, vol.17
, Issue.4
, pp. 395-416
-
-
Von Luxburg, U.1
-
37
-
-
84992726552
-
Estimating attributes: Analysis and extensions of relief
-
I. Kononenko, Estimating attributes: analysis and extensions of relief, in: Machine Learning: ECML-94, Springer, 1994, pp. 171-182.
-
(1994)
Machine Learning: ECML-94, Springer
, pp. 171-182
-
-
Kononenko, I.1
-
38
-
-
84873278481
-
On similarity preserving feature selection, Knowledge and Data Engineering
-
Z. Zhao, L. Wang, H. Liu, and J. Ye On similarity preserving feature selection, Knowledge and Data Engineering IEEE Transactions on 25 3 2013 619 632
-
(2013)
IEEE Transactions on
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
39
-
-
84871399329
-
Unsupervised feature selection using nonnegative spectral analysis
-
Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, Unsupervised feature selection using nonnegative spectral analysis., in: AAAI, 2012.
-
(2012)
AAAI
-
-
Li, Z.1
Yang, Y.2
Liu, J.3
Zhou, X.4
Lu, H.5
|