-
1
-
-
0031269184
-
On the Optimality of the Simple Bayesian Classifier under Zero-One Loss
-
P. Domingos and M. Pazzani, "On the Optimality of the Simple Bayesian Classifier under Zero-One Loss," Machine Learning, vol. 29, pp. 103-130, 1997. (Pubitemid 127510035)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
2
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
S. Dudoit, J. Fridlyand, and T. Speed, "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," J. Am. Statistical Assoc., vol. 97, pp. 77-87, 2002.
-
(2002)
J. Am. Statistical Assoc
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
3
-
-
53849089038
-
High dimensional classification using features annealed independence rules
-
J. Fan and Y. Fan, "High Dimensional Classification Using Features Annealed Independence Rules," Annals of Statistics, vol. 36, pp. 2232-2260, 2008.
-
(2008)
Annals of Statistics
, vol.36
, pp. 2232-2260
-
-
Fan, J.1
Fan, Y.2
-
4
-
-
84918441630
-
Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
-
June
-
T.M. Cover, "Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition," IEEE Trans. Electronic Computers, vol. 14, no. 3, pp. 326-334, June 1965.
-
(1965)
IEEE Trans. Electronic Computers
, vol.14
, Issue.3
, pp. 326-334
-
-
Cover, T.M.1
-
5
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R.A. Fisher, "The Use of Multiple Measurements in Taxonomic Problems," Annals of Eugenics, vol. 7, pp. 179-188, 1936.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
12
-
-
84937349757
-
Feature selection in pattern recognition
-
Jan.
-
K.-S. Fu, P.J. Min, and T.J. Li, "Feature Selection in Pattern Recognition," IEEE Trans. Systems Science and Cybernetics, vol. 6, no. 1, pp. 33-39, Jan. 1970.
-
(1970)
IEEE Trans. Systems Science and Cybernetics
, vol.6
, Issue.1
, pp. 33-39
-
-
Fu, K.-S.1
Min, P.J.2
Li, T.J.3
-
13
-
-
0016521175
-
On a class of computationally efficient feature selection criteria
-
C.H. Chen, "On a Class of Computationally Efficient Feature Selection Criteria," Pattern Recognition, vol. 7, pp. 87-94, 1975.
-
(1975)
Pattern Recognition
, vol.7
, pp. 87-94
-
-
Chen, C.H.1
-
14
-
-
0017535866
-
BRANCH AND BOUND ALGORITHM FOR FEATURE SUBSET SELECTION
-
P. Narendra and K. Fukunaga, "A Branch and Bound Algorithm for Feature Subset Selection," IEEE Trans. Computers, vol. 26, no. 9, pp. 917-922, Sept. 1977. (Pubitemid 8550870)
-
(1977)
IEEE Transactions on Computers
, vol.C-26
, Issue.9
, pp. 917-922
-
-
Narendra Patrenahalli, M.1
Fukunaga Keinosuke2
-
19
-
-
33645712892
-
Compressed sensing
-
Apr.
-
D.L. Donoho, "Compressed Sensing," IEEE Trans. Information Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
-
(2006)
IEEE Trans. Information Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
-
20
-
-
33745604236
-
Stable signal recovery from incomplete and inaccurate measurements
-
DOI 10.1002/cpa.20124
-
E.J. Candes, J. Romberg, and T. Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements," Comm. Pure and Applied Math., vol. 59, pp. 1207-1223, 2006. (Pubitemid 43988295)
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, Issue.8
, pp. 1207-1223
-
-
Candes, E.J.1
Romberg, J.K.2
Tao, T.3
-
21
-
-
34548275795
-
The dantzig selector: Statistical estimation when p is much larger than n
-
E. Candes and T. Tao, "The Dantzig Selector: Statistical Estimation When p Is Much Larger Than n," Annals of Statistics, vol. 35, no. 6, pp. 2313-2351, 2007.
-
(2007)
Annals of Statistics
, vol.35
, Issue.6
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
22
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
G.J. McLachlan, R.W. Bean, and D. Peel, "A Mixture Model-Based Approach to the Clustering of Microarray Expression Data," Bioinformatics, vol. 18, pp. 413-422, 2002. (Pubitemid 34284942)
-
(2002)
Bioinformatics
, vol.18
, Issue.3
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
23
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
DOI 10.1109/TPAMI.2005.159
-
H. Peng, F. Long, and C. Ding, "Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, " IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226-1238, Aug. 2005. (Pubitemid 41245053)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
24
-
-
48049087439
-
Feature selection with kernel class separability
-
Sept.
-
L. Wang, "Feature Selection with Kernel Class Separability," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 9, pp. 1534-1546, Sept. 2008.
-
(2008)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.30
, Issue.9
, pp. 1534-1546
-
-
Wang, L.1
-
25
-
-
0001001098
-
Feature selection for svms
-
T.K. Leen, T.G. Dietterich, and V. Tresp, eds. MIT Press
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, "Feature Selection for SVMs," Advances in Neural Information Processing Systems, T.K. Leen, T.G. Dietterich, and V. Tresp, eds., pp. 668-674, MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
26
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning, vol. 46, nos. 1-3, pp. 389-422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
29
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
31
-
-
0003389538
-
Variable selection in clustering and other contexts
-
C.L. Mallows, ed. Wiley
-
E.B. Fowlkes, R. Gnanadesikan, and J.R. Kettenring, "Variable Selection in Clustering and Other Contexts," Design, Data, and Analysis, C.L. Mallows, ed., pp. 13-34, Wiley, 1987.
-
(1987)
Design, Data, and Analysis
, pp. 13-34
-
-
Fowlkes, E.B.1
Gnanadesikan, R.2
Kettenring, J.R.3
-
33
-
-
33745156863
-
Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations
-
DOI 10.3150/bj/1106314847
-
P. Bickel and E. Levina, "Some Theory of Fisher's Linear Discriminant Function, 'Naive Bayes,' and Some Alternatives Where There Are Many More Variables Than Observations," Bernoulli, vol. 10, pp. 989-1010, 2004. (Pubitemid 44242745)
-
(2004)
Bernoulli
, vol.10
, Issue.6
, pp. 989-1010
-
-
Bickel, P.J.1
Levina, E.2
-
34
-
-
84898965347
-
A mathematical programming approach to the kernel fisher algorithm
-
MIT Press
-
S. Mika, G. Ratsch, and K.-R. Muller, "A Mathematical Programming Approach to the Kernel Fisher Algorithm," Advances in Neural Information Processing Systems, vol. 13, pp. 591-597, MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 591-597
-
-
Mika, S.1
Ratsch, G.2
Muller, K.-R.3
-
39
-
-
31644433509
-
Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling
-
DOI 10.1109/TPAMI.2006.46
-
S. Fidler, D. Slocaj, and A. Leonardis, "Combining Reconstructive and Discriminative Subspace Methods for Robust Classification and Regression by Subsampling," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp. 337-350, Mar. 2006. (Pubitemid 43167906)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.3
, pp. 337-350
-
-
Fidler, S.1
Skocaj, D.2
Leonardis, A.3
-
40
-
-
0016355478
-
A new look at the statistical model identification
-
Dec.
-
H. Akaike, "A New Look at the Statistical Model Identification, " IEEE Trans. Automatic Control, vol. 19, no. 6, pp. 716-723, Dec. 1974.
-
(1974)
IEEE Trans. Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
41
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, "Estimating the Dimension of a Model," Annals of Statistics, vol. 6, pp. 361-379, 1978.
-
(1978)
Annals of Statistics
, vol.6
, pp. 361-379
-
-
Schwarz, G.1
-
42
-
-
21844523862
-
The risk inflation criterion for multiple regression
-
D.P. Foster and E.I. George, "The Risk Inflation Criterion for Multiple Regression," Annals of Statistics, vol. 22, pp. 1947-1975, 1994.
-
(1994)
Annals of Statistics
, vol.22
, pp. 1947-1975
-
-
Foster, D.P.1
George, E.I.2
-
43
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
J. Weston, A. Elisseeff, B. Schlkopf, and M.E. Tipping, "Use of the Zero-Norm with Linear Models and Kernel Methods," J. Machine Learning Research, vol. 3, pp. 1439-1461, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schlkopf, B.3
Tipping, M.E.4
-
47
-
-
0021518209
-
STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES
-
S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.PAMI-6
, Issue.6
, pp. 721-741
-
-
Geman Stuart1
Geman Donald2
-
49
-
-
67349242938
-
An mrf-based deinterlacing algorithm with exemplar-based refinement
-
May
-
S. Dai, S. Baker, and S.B. Kang, "An MRF-Based Deinterlacing Algorithm with Exemplar-Based Refinement," IEEE Trans. Image Processing, vol. 18, no. 5, pp. 956-968, May 2009.
-
(2009)
IEEE Trans. Image Processing
, vol.18
, Issue.5
, pp. 956-968
-
-
Dai, S.1
Baker, S.2
Kang, S.B.3
-
50
-
-
0008821575
-
An efficient algorithm for image segmentation, Markov Random fields and related problems
-
D.S. Hochbaum, "An Efficient Algorithm for Image Segmentation, Markov Random Fields and Related Problems," J. ACM, vol. 48, no. 2, pp. 686-701, 2001.
-
(2001)
J. ACM
, vol.48
, Issue.2
, pp. 686-701
-
-
Hochbaum, D.S.1
-
51
-
-
0016565825
-
Minimum cuts and related problem
-
J.P. Picard and H.D. Ratliff, "Minimum Cuts and Related Problem," Networks, vol. 5, pp. 357-370, 1975.
-
(1975)
Networks
, vol.5
, pp. 357-370
-
-
Picard, J.P.1
Ratliff, H.D.2
-
52
-
-
0142039762
-
Exact optimization for MARKOV RANDOM fields with convex priors
-
Oct.
-
H. Ishikawa, "Exact Optimization for Markov Random Fields with Convex Priors," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1333-1336, Oct. 2003.
-
(2003)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.25
, Issue.10
, pp. 1333-1336
-
-
Ishikawa, H.1
-
53
-
-
0742286180
-
What energy can be minimized via graph cuts?"
-
Feb.
-
V. Kolmogorov and R. Zabih, "What Energy Can Be Minimized via Graph Cuts?" IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 147-159, Feb. 2004.
-
(2004)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.26
, Issue.2
, pp. 147-159
-
-
Kolmogorov, V.1
Zabih, R.2
-
54
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
DOI 10.1109/34.969114
-
Y. Boykov, O. Veksler, and R. Zabih, "Fast Approximate Energy Minimization via Graph Cuts," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001. (Pubitemid 33137959)
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
55
-
-
27744456278
-
MAP estimation via agreement on trees: Message-passing and linear programming
-
DOI 10.1109/TIT.2005.856938
-
M. Wainwright, T. Jaakkola, and A. Willsky, "MAP Estimation via Agreement on (Hyper)Trees: Message-Passing and Linear Programming," IEEE Trans. Information Theory, vol. 51, no. 11, pp. 3697-3717, Nov. 2005. (Pubitemid 41622574)
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.11
, pp. 3697-3717
-
-
Wainwright, M.J.1
Jaakkola, T.S.2
Willsky, A.S.3
-
56
-
-
23744513375
-
Constructing free-energy approximations and generalized belief propagation algorithms
-
DOI 10.1109/TIT.2005.850085
-
J. Yedidia, W. Freeman, and Y. Weiss, "Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms," IEEE Trans. Information Theory, vol. 51, no. 7, pp. 2282-2312, July 2004. (Pubitemid 41136394)
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.7
, pp. 2282-2312
-
-
Yedidia, J.S.1
Freeman, W.T.2
Weiss, Y.3
-
57
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
58
-
-
0003408496
-
-
C.L. Blake, D.J. Newman, S. Hettich, and C.J. Merz, UCI Repository of Machine Learning Databases, http://www.ics. uci.edu/mlearn/MLRepository.html, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Newman, D.J.2
Hettich, S.3
Merz, C.J.4
-
60
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. Golub et al., "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol. 286, pp. 531-537, http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.1
-
61
-
-
0034050902
-
Systematic variation in gene expression patterns in human cancer cell lines
-
D.T. Ross et al., "Systematic Variation in Gene Expression Patterns in Human Cancer Cell Lines," Nature Genetics, vol. 24, no. 3, pp. 227-234, 2000.
-
(2000)
Nature Genetics
, vol.24
, Issue.3
, pp. 227-234
-
-
Ross, D.T.1
-
62
-
-
0034088857
-
A gene expression database for the molecular pharmacology of cancer
-
DOI 10.1038/73439
-
U. Scherf et al., "A cDNA Microarray Gene Expression Database for the Molecular Pharmacology of Cancer," Nature Genetics, vol. 24, no. 3, pp. 236-244, 2000. (Pubitemid 30132190)
-
(2000)
Nature Genetics
, vol.24
, Issue.3
, pp. 236-244
-
-
Scherf, U.1
Ross, D.T.2
Waltham, M.3
Smith, L.H.4
Lee, J.K.5
Tanabe, L.6
Kohn, K.W.7
Reinhold, W.C.8
Myers, T.G.9
Andrews, D.T.10
Scudiero, D.A.11
Eisen, M.B.12
Sausville, E.A.13
Pommier, Y.14
Botstein, D.15
Brown, P.O.16
Weinstein, J.N.17
-
63
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
DOI 10.1016/S1535-6108(02)00030-2
-
D. Singh et al., "Gene Expression Correlates of Clinical Prostate Cancer Behavior," Cancer Cell, vol. 1, pp. 203-209, http:// www.broad.mit.edu/cgi-bin/cancer/datasets.cgi, 2002. (Pubitemid 41039166)
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
Febbo, P.G.2
Ross, K.3
Jackson, D.G.4
Manola, J.5
Ladd, C.6
Tamayo, P.7
Renshaw, A.A.8
D'Amico, A.V.9
Richie, J.P.10
Lander, E.S.11
Loda, M.12
Kantoff, P.W.13
Golub, T.R.14
Sellers, W.R.15
-
64
-
-
0035881732
-
Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer
-
J.B. Welsh et al., "Analysis of Gene Expression Identifies Candidate Markers and Pharmacological Targets in Prostate Cancer," Cancer Research, vol. 61, pp. 5974-5978, 2001. (Pubitemid 32762523)
-
(2001)
Cancer Research
, vol.61
, Issue.16
, pp. 5974-5978
-
-
Welsh, J.B.1
Sapinoso, L.M.2
Su, A.I.3
Kern, S.G.4
Wang-Rodriguez, J.5
Moskaluk, C.A.6
Frierson Jr., H.F.7
Hampton, G.M.8
|