메뉴 건너뛰기




Volumn 26, Issue 9, 2004, Pages 1105-1111

A Bayesian approach to joint feature selection and classifier design

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC TARGET RECOGNITION; COMPUTATIONAL COMPLEXITY; LEARNING ALGORITHMS; MAXIMUM LIKELIHOOD ESTIMATION; NEURAL NETWORKS; OPTIMIZATION; POLYNOMIALS; REGRESSION ANALYSIS;

EID: 4344667429     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2004.55     Document Type: Article
Times cited : (139)

References (20)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • J. Albert and S. Chib, "Bayesian Analysis of Binary and Polychotomous Response Data," J. Am. Statistical Assoc., vol. 88, pp. 669-679, 1993.
    • (1993) J. Am. Statistical Assoc. , vol.88 , pp. 669-679
    • Albert, J.1    Chib, S.2
  • 5
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene Selection for Cancer Classification Using Support Vector Machines," Machine Learning, vol. 46, nos. 1-3, pp. 389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 7
    • 0032787276 scopus 로고    scopus 로고
    • An empirical evaluation of bayesian sampling with hybrid Monte Carlo for training neural network classifiers
    • D. Husmeier, W. Penny, and S.J. Roberts, "An Empirical Evaluation of Bayesian Sampling with Hybrid Monte Carlo for Training Neural Network Classifiers," Neural Networks, vol. 12, pp. 677-705, 1999.
    • (1999) Neural Networks , vol.12 , pp. 677-705
    • Husmeier, D.1    Penny, W.2    Roberts, S.J.3
  • 14
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support Vector machines, Gaussian processes, and other Kernel classifiers
    • M. Seeger, "Bayesian Model Selection for Support Vector Machines, Gaussian Processes, and Other Kernel Classifiers," Proc. Advances in Neural Information Processing Systems (NIPS) 12, 2000.
    • Proc. Advances in Neural Information Processing Systems (NIPS) , vol.12 , pp. 2000
    • Seeger, M.1
  • 15
    • 0041914114 scopus 로고    scopus 로고
    • A Kronecker product representation of the fast gauss transform
    • X. Sun and Y. Bao, "A Kronecker Product Representation of the Fast Gauss Transform," SIAM J. Matrix Analysis and Applications, vol. 24, no. 3, pp. 768-786, 2003.
    • (2003) SIAM J. Matrix Analysis and Applications , vol.24 , Issue.3 , pp. 768-786
    • Sun, X.1    Bao, Y.2
  • 17
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani, "Regression Shrinkage and Selection via the LASSO," J. Royal Statistical Soc. (B), vol. 58, pp. 267-288, 1996.
    • (1996) J. Royal Statistical Soc. (B) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 18
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance Vector machine
    • M.E. Tipping, "Sparse Bayesian Learning and the Relevance Vector Machine," J. Machine Learning Research, vol. 1, pp. 211-244, 2001.
    • (2001) J. Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.