메뉴 건너뛰기




Volumn 10, Issue 6, 2011, Pages 967-987

Unsupervised feature selection using incremental least squares

Author keywords

data mining; Feature selection; filter; kernel method; least squares

Indexed keywords


EID: 82455192705     PISSN: 02196220     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219622011004671     Document Type: Article
Times cited : (22)

References (68)
  • 3
    • 37249047989 scopus 로고    scopus 로고
    • The recent trend in QSAR modeling - Variable selection and 3D-QSAR methods
    • DOI 10.2174/157340907782799417
    • M. Arakawa, K. Hasegawa and K. Funatsu, The recent trend in QSAR modeling - Variable selection and 3D-QSAR methods, Current Computer-Aided Drug Design 3(4) (2007) 254-262. (Pubitemid 350268173)
    • (2007) Current Computer-Aided Drug Design , vol.3 , Issue.4 , pp. 254-262
    • Arakawa, M.1    Hasegawa, K.2    Funatsu, K.3
  • 5
    • 24144479105 scopus 로고    scopus 로고
    • Data mining via multiple criteria linear programming: Applications in credit card portfolio management
    • Y. Shi, Y. Peng, W. Xu and X. Tang, Data mining via multiple criteria linear programming: Applications in credit card portfolio management, International Journal of Information Technology and Decision Making 1(1) (2002) 131-151.
    • (2002) International Journal of Information Technology and Decision Making , vol.1 , Issue.1 , pp. 131-151
    • Shi, Y.1    Peng, Y.2    Xu, W.3    Tang, X.4
  • 9
    • 33746185690 scopus 로고    scopus 로고
    • Classifying credit card accounts for business intelligence and decision making: A Multiple-criteria quadratic programming approach
    • PII S0219622005001775
    • Y. Shi, Y. Peng, G. Kou and Z. X. Chen, Classifying credit card accounts for business intelligence and decision making: A multiple-criteria quadratic programming approach, International Journal of Information Technology and Decision Making 4(4) (2005) 581-599. (Pubitemid 44099616)
    • (2005) International Journal of Information Technology and Decision Making , vol.4 , Issue.4 , pp. 581-599
    • Shi, Y.1    Peng, Y.2    Kou, G.3    Chen, Z.4
  • 14
    • 0042707768 scopus 로고    scopus 로고
    • Screening for content - The evolution of high throughput
    • DOI 10.1038/nbt0803-859
    • A. Dove, Screening for content-the evolution of high throughput, Nature Biotechnology 21(8) (2003) 859-64. (Pubitemid 36936186)
    • (2003) Nature Biotechnology , vol.21 , Issue.8 , pp. 859-864
    • Dove, A.1
  • 15
    • 17944378423 scopus 로고    scopus 로고
    • Dimensionality reduction for similarity searching in dynamic databases
    • K. V. R. Kanth, D. Agrawal and A. Singh, Dimensionality reduction for similarity searching in dynamic databases, SIGMOD Record 27(2) (1998) 166-176. (Pubitemid 128655966)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 166-176
    • Ravi Kanth, K.V.1    Agrawal, D.2    Singh, A.3
  • 16
    • 0035049111 scopus 로고    scopus 로고
    • On the "dimensionality curse" and the "self-similarity blessing"
    • DOI 10.1109/69.908983
    • F. Korn, B. U. Pagel and C. Faloutsos, On the 'Dimensionality Curse' and the 'Self- Similarity Blessing', IEEE Transactions on Knowledge and Data Engineering 13(1) (2001) 96-111. (Pubitemid 32301046)
    • (2001) IEEE Transactions on Knowledge and Data Engineering , vol.13 , Issue.1 , pp. 96-111
    • Korn, F.1    Pagel, B.-U.2    Faloutsos, C.3
  • 18
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A. L. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence 97(1-2) (1997) 245-271. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research 3(7-8) (2003) 1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 20
    • 34147193881 scopus 로고    scopus 로고
    • A fast and effective method to find correlations among attributes in databases
    • DOI 10.1007/s10618-006-0056-4
    • E. P. M. de Sousa, C. Traina, A. J. M. Traina, L. J. Wu and C. Faloutsos, A fast and effective method to find correlations among attributes in databases, Data Mining and Knowledge Discovery 14(3) (2007) 367-407. (Pubitemid 46582606)
    • (2007) Data Mining and Knowledge Discovery , vol.14 , Issue.3 , pp. 367-407
    • De Sousa, E.P.M.1    Traina Jr., C.2    Traina, A.J.M.3    Wu, L.4    Faloutsos, C.5
  • 21
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. B. Tenenbaum, V. de Silva and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290(5500) (2000) 2319-2323. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500) (2000) 2323-2326. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 24
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H. Liu and L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Transactions on Knowledge and Data Engineering 17(4) (2005) 491-502. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 28
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • DOI 10.1016/j.patcog.2006.07.009, PII S0031320306003414
    • H. Hoffmann, Kernel PCA for novelty detection, Pattern Recognition 40(3) (2007) 863-874. (Pubitemid 44667761)
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 863-874
    • Hoffmann, H.1
  • 30
    • 30044447599 scopus 로고    scopus 로고
    • Generalized low rank approximations of matrices
    • J. P. Ye, Generalized low rank approximations of matrices, Machine Learning 61(1-3) (2005) 167-191.
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 167-191
    • Ye, J.P.1
  • 31
    • 33947220823 scopus 로고    scopus 로고
    • Feature subset selection and ranking for data dimensionality reduction
    • DOI 10.1109/TPAMI.2007.250607
    • H. L. Wei and S. A. Billings, Feature subset selection and ranking for data dimensionality reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1) (2007) 162-166. (Pubitemid 46415953)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.1 , pp. 162-166
    • Wei, H.-L.1    Billings, S.A.2
  • 32
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H. W. Liu, J. Sun, L. Liu and H. J. Zhang, Feature selection with dynamic mutual information, Pattern Recognition 42(7) (2009) 1330-1339.
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1330-1339
    • Liu, H.W.1    Sun, J.2    Liu, L.3    Zhang, H.J.4
  • 33
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John,Wrappers for feature subset selection, Artificial Intelligence 97(1-2) (1997) 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 38
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Sikonja and I. Kononenko, Theoretical and empirical analysis of ReliefF and RReliefF, Maching Learning 53(1-2) (2003) 23-69.
    • (2003) Maching Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 39
    • 0002649659 scopus 로고    scopus 로고
    • Novel methods for subset selection with respect to problem knowledge
    • P. Pudil and J. Novovicova, Novel methods for subset selection with respect to problem knowledge, IEEE Intelligent Systems and Their Applications 13(2) (1998) 66-74.
    • (1998) IEEE Intelligent Systems and Their Applications , vol.13 , Issue.2 , pp. 66-74
    • Pudil, P.1    Novovicova, J.2
  • 41
    • 0028496468 scopus 로고
    • Learning Boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T. G. Dietterich, Learning Boolean concepts in the presence of many irrelevant features, Artificial Intelligence 69(1-2) (1994) 279-305.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 42
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu, Consistency-based search in feature selection, Artificial Intelligence 151(1-2) (2003) 155-176.
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 43
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M. A. Hall, Correlation-based feature selection for discrete and numeric class machine learning, 17th International Conference on Machine Learning, 2000, pp. 359-366.
    • (2000) 17th International Conference on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 45
    • 0010739663 scopus 로고    scopus 로고
    • Filters wrappers and a boosting-based hybrid for feature selection
    • S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, 18th International Conference on Machine Learning, 2001, pp. 74-81.
    • (2001) 18th International Conference on Machine Learning , pp. 74-81
    • Das, S.1
  • 47
    • 34548033746 scopus 로고    scopus 로고
    • Fuzzy feature selection based on min-max learning rule and extension matrix
    • DOI 10.1016/j.patcog.2007.06.007, PII S0031320307002725
    • Y. Li and Z. F. Wu, Fuzzy feature selection based on min-max learning rule and extension matrix, Pattern Recognition 41(1) (2008) 217-226. (Pubitemid 47284220)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 217-226
    • Li, Y.1    Wu, Z.-F.2
  • 48
    • 18144390199 scopus 로고    scopus 로고
    • Efficiently searching the important input variables using Bayesian discriminant
    • DOI 10.1109/TCSI.2005.844364
    • D. Huang and T. W. S. Chow, Efficiently searching the important input variables using Bayesian discriminant, IEEE Transactions on Circuits and Systems Part I: Regular Papers 52(4) (2005) 785-793. (Pubitemid 40608440)
    • (2005) IEEE Transactions on Circuits and Systems I: Regular Papers , vol.52 , Issue.4 , pp. 785-793
    • Huang, D.1    Chow, T.W.S.2
  • 52
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • L. Wolf and A. Shashua, Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach, Journal of Machine Learning Research 6 (2005) 1855-1887.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 54
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Z. Zhao and H. Liu, Spectral feature selection for supervised and unsupervised learning, 24th International Conference on Machine learning, 2007, pp. 1151-1157. (Pubitemid 47275183)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 55
    • 17444406668 scopus 로고    scopus 로고
    • Identifying critical variables of principal components for unsupervised feature selection
    • DOI 10.1109/TSMCB.2004.843269
    • K. Z. Mao, Identifying critical variables of principal components for unsupervised feature selection, IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics 35(2) (2005) 339-344. (Pubitemid 40535916)
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.35 , Issue.2 , pp. 339-344
    • Mao, K.Z.1
  • 56
    • 0002457803 scopus 로고
    • Selection of variables to preserve multivariate data structure, using principal components
    • Applied Statistics
    • W. J. Krzanowski, Selection of variables to preserve multivariate data structure, using principal components, Journal of the Royal Statistical Society: Series C (Applied Statistics) 36(1) (1987) 22-33.
    • (1987) Journal of the Royal Statistical Society: Series C , vol.36 , Issue.1 , pp. 22-33
    • Krzanowski, W.J.1
  • 57
    • 70350629881 scopus 로고    scopus 로고
    • Local kernel regression score for selecting features of highdimensional data
    • Y. M. Cheung and H. Zeng, Local kernel regression score for selecting features of highdimensional data, IEEE Transactions on Knowledge and Data Engineering 21(12) (2009) 1798-1802.
    • (2009) IEEE Transactions on Knowledge and Data Engineering , vol.21 , Issue.12 , pp. 1798-1802
    • Cheung, Y.M.1    Zeng, H.2
  • 61
    • 33846516584 scopus 로고    scopus 로고
    • 1 2nd edn., Information Science and Statistics, eds. M. Jordan, J. Kleinberg and B. Scholkopf Springer
    • C. M. Bishop, Pattern recognition and machine learning, 2nd edn., Information Science and Statistics, eds. M. Jordan, J. Kleinberg and B. Scholkopf (Springer, 2006).
    • (2006) Pattern recognition and machine learning
    • Bishop, C.M.1
  • 65
    • 82455189262 scopus 로고    scopus 로고
    • USPS
    • USPS, http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/data.html.
  • 66
    • 82455165367 scopus 로고    scopus 로고
    • PIE
    • PIE, http://www.ri.cmu.edu/projects/project 418.html.
  • 67
    • 82455189263 scopus 로고    scopus 로고
    • UMist
    • UMist, http://www.sheffield.ac.uk/eee/research/vie/research/face.html.
  • 68
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • National Taiwan University
    • C. W. Hsu, C. C. Chang and C. J. Lin, A practical guide to support vector classification, Department of Computer Science, National Taiwan University (2010).
    • (2010) Department of Computer Science
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.