-
2
-
-
58149235001
-
A descriptive framework for the field of data mining and knowledge discovery
-
Y. Peng, G. Kou, Y. Shi and Z. X. Chen, A descriptive framework for the field of data mining and knowledge discovery, International Journal of Information Technology and Decision Making 7(4) (2008) 639-682.
-
(2008)
International Journal of Information Technology and Decision Making
, vol.7
, Issue.4
, pp. 639-682
-
-
Peng, Y.1
Kou, G.2
Shi, Y.3
Chen, Z.X.4
-
3
-
-
37249047989
-
The recent trend in QSAR modeling - Variable selection and 3D-QSAR methods
-
DOI 10.2174/157340907782799417
-
M. Arakawa, K. Hasegawa and K. Funatsu, The recent trend in QSAR modeling - Variable selection and 3D-QSAR methods, Current Computer-Aided Drug Design 3(4) (2007) 254-262. (Pubitemid 350268173)
-
(2007)
Current Computer-Aided Drug Design
, vol.3
, Issue.4
, pp. 254-262
-
-
Arakawa, M.1
Hasegawa, K.2
Funatsu, K.3
-
5
-
-
24144479105
-
Data mining via multiple criteria linear programming: Applications in credit card portfolio management
-
Y. Shi, Y. Peng, W. Xu and X. Tang, Data mining via multiple criteria linear programming: Applications in credit card portfolio management, International Journal of Information Technology and Decision Making 1(1) (2002) 131-151.
-
(2002)
International Journal of Information Technology and Decision Making
, vol.1
, Issue.1
, pp. 131-151
-
-
Shi, Y.1
Peng, Y.2
Xu, W.3
Tang, X.4
-
6
-
-
78149261542
-
High utility itemsets mining
-
Y. Liu, J. Li, W. K. Liao, A. Choudhary and Y. Shi, High utility itemsets mining, International Journal of Information Technology and Decision Making 9(6) (2010) 905-934.
-
(2010)
International Journal of Information Technology and Decision Making
, vol.9
, Issue.6
, pp. 905-934
-
-
Liu, Y.1
Li, J.2
Liao, W.K.3
Choudhary, A.4
Shi, Y.5
-
7
-
-
78751522102
-
Ensemble of software defect predictors: An AHP-based evaluation method
-
Y. Peng, G. Kou, G. X. Wang, W. S. Wu and Y. Shi, Ensemble of software defect predictors: An AHP-based evaluation method, International Journal of Information Technology and Decision Making 10(1) (2011) 187-206.
-
(2011)
International Journal of Information Technology and Decision Making
, vol.10
, Issue.1
, pp. 187-206
-
-
Peng, Y.1
Kou, G.2
Wang, G.X.3
Wu, W.S.4
Shi, Y.5
-
8
-
-
77149120435
-
Empirical evaluation of classifiers for software risk management
-
Y. Peng, G. Kou, G. X. Wang, H. G. Wang and F. I. S. Ko, Empirical evaluation of classifiers for software risk management, International Journal of Information Technology and Decision Making 8(4) (2009) 749-767.
-
(2009)
International Journal of Information Technology and Decision Making
, vol.8
, Issue.4
, pp. 749-767
-
-
Peng, Y.1
Kou, G.2
Wang, G.X.3
Wang, H.G.4
Ko, F.I.S.5
-
9
-
-
33746185690
-
Classifying credit card accounts for business intelligence and decision making: A Multiple-criteria quadratic programming approach
-
PII S0219622005001775
-
Y. Shi, Y. Peng, G. Kou and Z. X. Chen, Classifying credit card accounts for business intelligence and decision making: A multiple-criteria quadratic programming approach, International Journal of Information Technology and Decision Making 4(4) (2005) 581-599. (Pubitemid 44099616)
-
(2005)
International Journal of Information Technology and Decision Making
, vol.4
, Issue.4
, pp. 581-599
-
-
Shi, Y.1
Peng, Y.2
Kou, G.3
Chen, Z.4
-
10
-
-
79953699640
-
Structural model for determining enterprise group's integrated lines of credit
-
L. Chen, Z. F. Zhou, Y. Peng and G. Kou, Structural model for determining enterprise group's integrated lines of credit, International Journal of Information Technology and Decision Making 10(2) (2011) 269-285.
-
(2011)
International Journal of Information Technology and Decision Making
, vol.10
, Issue.2
, pp. 269-285
-
-
Chen, L.1
Zhou, Z.F.2
Peng, Y.3
Kou, G.4
-
14
-
-
0042707768
-
Screening for content - The evolution of high throughput
-
DOI 10.1038/nbt0803-859
-
A. Dove, Screening for content-the evolution of high throughput, Nature Biotechnology 21(8) (2003) 859-64. (Pubitemid 36936186)
-
(2003)
Nature Biotechnology
, vol.21
, Issue.8
, pp. 859-864
-
-
Dove, A.1
-
15
-
-
17944378423
-
Dimensionality reduction for similarity searching in dynamic databases
-
K. V. R. Kanth, D. Agrawal and A. Singh, Dimensionality reduction for similarity searching in dynamic databases, SIGMOD Record 27(2) (1998) 166-176. (Pubitemid 128655966)
-
(1998)
SIGMOD Record
, vol.27
, Issue.2
, pp. 166-176
-
-
Ravi Kanth, K.V.1
Agrawal, D.2
Singh, A.3
-
18
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
PII S0004370297000635
-
A. L. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence 97(1-2) (1997) 245-271. (Pubitemid 127401106)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
19
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of Machine Learning Research 3(7-8) (2003) 1157-1182.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.7-8
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
20
-
-
34147193881
-
A fast and effective method to find correlations among attributes in databases
-
DOI 10.1007/s10618-006-0056-4
-
E. P. M. de Sousa, C. Traina, A. J. M. Traina, L. J. Wu and C. Faloutsos, A fast and effective method to find correlations among attributes in databases, Data Mining and Knowledge Discovery 14(3) (2007) 367-407. (Pubitemid 46582606)
-
(2007)
Data Mining and Knowledge Discovery
, vol.14
, Issue.3
, pp. 367-407
-
-
De Sousa, E.P.M.1
Traina Jr., C.2
Traina, A.J.M.3
Wu, L.4
Faloutsos, C.5
-
21
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. B. Tenenbaum, V. de Silva and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290(5500) (2000) 2319-2323. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
22
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500) (2000) 2323-2326. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
24
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
DOI 10.1109/TKDE.2005.66
-
H. Liu and L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Transactions on Knowledge and Data Engineering 17(4) (2005) 491-502. (Pubitemid 40495592)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
28
-
-
33750522220
-
Kernel PCA for novelty detection
-
DOI 10.1016/j.patcog.2006.07.009, PII S0031320306003414
-
H. Hoffmann, Kernel PCA for novelty detection, Pattern Recognition 40(3) (2007) 863-874. (Pubitemid 44667761)
-
(2007)
Pattern Recognition
, vol.40
, Issue.3
, pp. 863-874
-
-
Hoffmann, H.1
-
29
-
-
79957526189
-
Evaluate dissimilarity of samples in feature space for improving KPCA
-
X. Yong, D. Zhang, J. Yang, J. Zhong and J. Y. Yang, Evaluate dissimilarity of samples in feature space for improving KPCA, International Journal of Information Technology and Decision Making 10(3) (2011) 479-495.
-
(2011)
International Journal of Information Technology and Decision Making
, vol.10
, Issue.3
, pp. 479-495
-
-
Yong, X.1
Zhang, D.2
Yang, J.3
Zhong, J.4
Yang, J.Y.5
-
30
-
-
30044447599
-
Generalized low rank approximations of matrices
-
J. P. Ye, Generalized low rank approximations of matrices, Machine Learning 61(1-3) (2005) 167-191.
-
(2005)
Machine Learning
, vol.61
, Issue.1-3
, pp. 167-191
-
-
Ye, J.P.1
-
31
-
-
33947220823
-
Feature subset selection and ranking for data dimensionality reduction
-
DOI 10.1109/TPAMI.2007.250607
-
H. L. Wei and S. A. Billings, Feature subset selection and ranking for data dimensionality reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1) (2007) 162-166. (Pubitemid 46415953)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 162-166
-
-
Wei, H.-L.1
Billings, S.A.2
-
32
-
-
62349118015
-
Feature selection with dynamic mutual information
-
H. W. Liu, J. Sun, L. Liu and H. J. Zhang, Feature selection with dynamic mutual information, Pattern Recognition 42(7) (2009) 1330-1339.
-
(2009)
Pattern Recognition
, vol.42
, Issue.7
, pp. 1330-1339
-
-
Liu, H.W.1
Sun, J.2
Liu, L.3
Zhang, H.J.4
-
33
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G. H. John,Wrappers for feature subset selection, Artificial Intelligence 97(1-2) (1997) 273-324. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
38
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. Robnik-Sikonja and I. Kononenko, Theoretical and empirical analysis of ReliefF and RReliefF, Maching Learning 53(1-2) (2003) 23-69.
-
(2003)
Maching Learning
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
41
-
-
0028496468
-
Learning Boolean concepts in the presence of many irrelevant features
-
H. Almuallim and T. G. Dietterich, Learning Boolean concepts in the presence of many irrelevant features, Artificial Intelligence 69(1-2) (1994) 279-305.
-
(1994)
Artificial Intelligence
, vol.69
, Issue.1-2
, pp. 279-305
-
-
Almuallim, H.1
Dietterich, T.G.2
-
42
-
-
0242302657
-
Consistency-based search in feature selection
-
M. Dash and H. Liu, Consistency-based search in feature selection, Artificial Intelligence 151(1-2) (2003) 155-176.
-
(2003)
Artificial Intelligence
, vol.151
, Issue.1-2
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
43
-
-
85065703189
-
Correlation-based feature selection for discrete and numeric class machine learning
-
M. A. Hall, Correlation-based feature selection for discrete and numeric class machine learning, 17th International Conference on Machine Learning, 2000, pp. 359-366.
-
(2000)
17th International Conference on Machine Learning
, pp. 359-366
-
-
Hall, M.A.1
-
45
-
-
0010739663
-
Filters wrappers and a boosting-based hybrid for feature selection
-
S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, 18th International Conference on Machine Learning, 2001, pp. 74-81.
-
(2001)
18th International Conference on Machine Learning
, pp. 74-81
-
-
Das, S.1
-
47
-
-
34548033746
-
Fuzzy feature selection based on min-max learning rule and extension matrix
-
DOI 10.1016/j.patcog.2007.06.007, PII S0031320307002725
-
Y. Li and Z. F. Wu, Fuzzy feature selection based on min-max learning rule and extension matrix, Pattern Recognition 41(1) (2008) 217-226. (Pubitemid 47284220)
-
(2008)
Pattern Recognition
, vol.41
, Issue.1
, pp. 217-226
-
-
Li, Y.1
Wu, Z.-F.2
-
48
-
-
18144390199
-
Efficiently searching the important input variables using Bayesian discriminant
-
DOI 10.1109/TCSI.2005.844364
-
D. Huang and T. W. S. Chow, Efficiently searching the important input variables using Bayesian discriminant, IEEE Transactions on Circuits and Systems Part I: Regular Papers 52(4) (2005) 785-793. (Pubitemid 40608440)
-
(2005)
IEEE Transactions on Circuits and Systems I: Regular Papers
, vol.52
, Issue.4
, pp. 785-793
-
-
Huang, D.1
Chow, T.W.S.2
-
49
-
-
36749015551
-
Feature selection via least squares support feature machine
-
J. P. Li, Z. Y. Chen, L. W. Wei and W. X. Xu, Feature selection via least squares support feature machine, International Journal of Information Technology and Decision Making 6(4) (2007) 671-686.
-
(2007)
International Journal of Information Technology and Decision Making
, vol.6
, Issue.4
, pp. 671-686
-
-
Li, J.P.1
Chen, Z.Y.2
Wei, L.W.3
Xu, W.X.4
-
50
-
-
78149289039
-
Feature selection for clustering - A filter solution
-
M. Dash, K. Choi, P. Scheuermann and H. Liu, Feature selection for clustering - A filter solution, IEEE International Conference on Data Mining, 2002, pp. 115-122.
-
(2002)
IEEE International Conference on Data Mining
, pp. 115-122
-
-
Dash, M.1
Choi, K.2
Scheuermann, P.3
Liu, H.4
-
52
-
-
27844550205
-
Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
-
L. Wolf and A. Shashua, Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach, Journal of Machine Learning Research 6 (2005) 1855-1887.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
-
54
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
-
Z. Zhao and H. Liu, Spectral feature selection for supervised and unsupervised learning, 24th International Conference on Machine learning, 2007, pp. 1151-1157. (Pubitemid 47275183)
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
55
-
-
17444406668
-
Identifying critical variables of principal components for unsupervised feature selection
-
DOI 10.1109/TSMCB.2004.843269
-
K. Z. Mao, Identifying critical variables of principal components for unsupervised feature selection, IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics 35(2) (2005) 339-344. (Pubitemid 40535916)
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.35
, Issue.2
, pp. 339-344
-
-
Mao, K.Z.1
-
56
-
-
0002457803
-
Selection of variables to preserve multivariate data structure, using principal components
-
Applied Statistics
-
W. J. Krzanowski, Selection of variables to preserve multivariate data structure, using principal components, Journal of the Royal Statistical Society: Series C (Applied Statistics) 36(1) (1987) 22-33.
-
(1987)
Journal of the Royal Statistical Society: Series C
, vol.36
, Issue.1
, pp. 22-33
-
-
Krzanowski, W.J.1
-
57
-
-
70350629881
-
Local kernel regression score for selecting features of highdimensional data
-
Y. M. Cheung and H. Zeng, Local kernel regression score for selecting features of highdimensional data, IEEE Transactions on Knowledge and Data Engineering 21(12) (2009) 1798-1802.
-
(2009)
IEEE Transactions on Knowledge and Data Engineering
, vol.21
, Issue.12
, pp. 1798-1802
-
-
Cheung, Y.M.1
Zeng, H.2
-
58
-
-
0007636796
-
Fast feature selection using the fractal dimension
-
C. T. Jr., A. Traina, L. Wu and C. Faloutsos, Fast feature selection using the fractal dimension, XV Brazilian Symp. on Databases, 2000, pp. 158-171.
-
(2000)
XV Brazilian Symp. on Databases
, pp. 158-171
-
-
Traina, A.1
Wu, L.2
Faloutsos, C.3
-
61
-
-
33846516584
-
-
1 2nd edn., Information Science and Statistics, eds. M. Jordan, J. Kleinberg and B. Scholkopf Springer
-
C. M. Bishop, Pattern recognition and machine learning, 2nd edn., Information Science and Statistics, eds. M. Jordan, J. Kleinberg and B. Scholkopf (Springer, 2006).
-
(2006)
Pattern recognition and machine learning
-
-
Bishop, C.M.1
-
65
-
-
82455189262
-
-
USPS
-
USPS, http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/data.html.
-
-
-
-
66
-
-
82455165367
-
-
PIE
-
PIE, http://www.ri.cmu.edu/projects/project 418.html.
-
-
-
-
67
-
-
82455189263
-
-
UMist
-
UMist, http://www.sheffield.ac.uk/eee/research/vie/research/face.html.
-
-
-
-
68
-
-
4944228528
-
A practical guide to support vector classification
-
National Taiwan University
-
C. W. Hsu, C. C. Chang and C. J. Lin, A practical guide to support vector classification, Department of Computer Science, National Taiwan University (2010).
-
(2010)
Department of Computer Science
-
-
Hsu, C.W.1
Chang, C.C.2
Lin, C.J.3
|