-
1
-
-
0016370897
-
Separation of megakaryocytes from mouse bone marrow by velocity sedimentation
-
Nakeff A, Maat B. Separation of megakaryocytes from mouse bone marrow by velocity sedimentation. Blood. 1974;43(4):591-595.
-
(1974)
Blood
, vol.43
, Issue.4
, pp. 591-595
-
-
Nakeff, A.1
Maat, B.2
-
2
-
-
0027520550
-
Regulation of megakaryocytopoiesis
-
Avraham H. Regulation of megakaryocytopoiesis. Stem Cells. 1993;11(6):499-510.
-
(1993)
Stem Cells
, vol.11
, Issue.6
, pp. 499-510
-
-
Avraham, H.1
-
3
-
-
78349243311
-
Cytoskeletal mechanics of proplatelet maturation and platelet release
-
Thon JN, Montalvo A, Patel-Hett S, et al. Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol. 2010;191(4): 861-874.
-
(2010)
J Cell Biol
, vol.191
, Issue.4
, pp. 861-874
-
-
Thon, J.N.1
Montalvo, A.2
Patel-Hett, S.3
-
4
-
-
84880010050
-
The incredible journey: From megakaryocyte development to platelet formation
-
Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6): 785-796.
-
(2013)
J Cell Biol
, vol.201
, Issue.6
, pp. 785-796
-
-
Machlus, K.R.1
Italiano, J.E.2
-
5
-
-
84907222943
-
Platelet bioreactor-on-a-chip
-
Thon JN, Mazutis L, Wu S, et al. Platelet bioreactor-on-a-chip. Blood. 2014;124(12): 1857-1867.
-
(2014)
Blood
, vol.124
, Issue.12
, pp. 1857-1867
-
-
Thon, J.N.1
Mazutis, L.2
Wu, S.3
-
6
-
-
0028302409
-
Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand
-
de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 1994; 369(6481):533-538.
-
(1994)
Nature
, vol.369
, Issue.6481
, pp. 533-538
-
-
De Sauvage, F.J.1
Hass, P.E.2
Spencer, S.D.3
-
7
-
-
70249121773
-
Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation
-
Mazharian A, Watson SP, Severin S. Critical role for ERK1/2 in bone marrow and fetal liver-derived primary megakaryocyte differentiation, motility, and proplatelet formation. Exp Hematol. 2009; 37(10):1238-1249.
-
(2009)
Exp Hematol
, vol.37
, Issue.10
, pp. 1238-1249
-
-
Mazharian, A.1
Watson, S.P.2
Severin, S.3
-
8
-
-
0033566712
-
Thrombopoietin-induced activation of the mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: Role in endomitosis
-
Rojnuckarin P, Drachman JG, Kaushansky K. Thrombopoietin-induced activation of the mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: role in endomitosis. Blood. 1999;94(4):1273-1282.
-
(1999)
Blood
, vol.94
, Issue.4
, pp. 1273-1282
-
-
Rojnuckarin, P.1
Drachman, J.G.2
Kaushansky, K.3
-
9
-
-
40549087266
-
PI3K/Akt/FOXO3a pathway contributes to thrombopoietin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27(Kip1)
-
Nakao T, Geddis AE, Fox NE, Kaushansky K. PI3K/Akt/FOXO3a pathway contributes to thrombopoietin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27(Kip1). Cell Cycle. 2008;7(2):257-266.
-
(2008)
Cell Cycle
, vol.7
, Issue.2
, pp. 257-266
-
-
Nakao, T.1
Geddis, A.E.2
Fox, N.E.3
Kaushansky, K.4
-
10
-
-
84890946972
-
PAK signalling during the development and progression of cancer
-
Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014; 14(1):13-25.
-
(2014)
Nat Rev Cancer
, vol.14
, Issue.1
, pp. 13-25
-
-
Radu, M.1
Semenova, G.2
Kosoff, R.3
Chernoff, J.4
-
11
-
-
0037192630
-
PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during crosscascade activation of the ERK pathway
-
Coles LC, Shaw PE. PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during crosscascade activation of the ERK pathway. Oncogene. 2002;21(14):2236-2244.
-
(2002)
Oncogene
, vol.21
, Issue.14
, pp. 2236-2244
-
-
Coles, L.C.1
Shaw, P.E.2
-
12
-
-
0033194037
-
Activation of LIM-kinase by Pak1 couples Rac/ Cdc42 GTPase signalling to actin cytoskeletal dynamics
-
Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/ Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol. 1999;1(5):253-259.
-
(1999)
Nat Cell Biol
, vol.1
, Issue.5
, pp. 253-259
-
-
Edwards, D.C.1
Sanders, L.C.2
Bokoch, G.M.3
Gill, G.N.4
-
13
-
-
84872299428
-
Pak2 kinase restrains mast cell FcϵRI receptor signaling through modulation of Rho protein guanine nucleotide exchange factor (GEF) activity
-
Kosoff R, Chow HY, Radu M, Chernoff J. Pak2 kinase restrains mast cell FcϵRI receptor signaling through modulation of Rho protein guanine nucleotide exchange factor (GEF) activity. J Biol Chem. 2013;288(2):974-983.
-
(2013)
J Biol Chem
, vol.288
, Issue.2
, pp. 974-983
-
-
Kosoff, R.1
Chow, H.Y.2
Radu, M.3
Chernoff, J.4
-
14
-
-
26944442735
-
The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A
-
Zhao ZS, Lim JP, Ng YW, Lim L, Manser E. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 2005;20(2):237-249.
-
(2005)
Mol Cell
, vol.20
, Issue.2
, pp. 237-249
-
-
Zhao, Z.S.1
Lim, J.P.2
Ng, Y.W.3
Lim, L.4
Manser, E.5
-
15
-
-
84878380745
-
The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment
-
Dorrance AM, De Vita S, Radu M, et al. The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood. 2013;121(13): 2474-2482.
-
(2013)
Blood
, vol.121
, Issue.13
, pp. 2474-2482
-
-
Dorrance, A.M.1
De Vita, S.2
Radu, M.3
-
16
-
-
10444261914
-
SDF-1 synergistically enhances IL-3-induced activation of the Raf-1/ MEK/Erk signaling pathway through activation of Rac and its effector Pak kinases to promote hematopoiesis and chemotaxis
-
Arai A, Jin A, Yan W, et al. SDF-1 synergistically enhances IL-3-induced activation of the Raf-1/ MEK/Erk signaling pathway through activation of Rac and its effector Pak kinases to promote hematopoiesis and chemotaxis. Cell Signal. 2005; 17(4):497-506.
-
(2005)
Cell Signal
, vol.17
, Issue.4
, pp. 497-506
-
-
Arai, A.1
Jin, A.2
Yan, W.3
-
17
-
-
84883362507
-
The PAK system links Rho GTPase signaling to thrombinmediated platelet activation
-
Aslan JE, Baker SM, Loren CP, et al. The PAK system links Rho GTPase signaling to thrombinmediated platelet activation. Am J Physiol Cell Physiol. 2013;305(5):C519-C528.
-
(2013)
Am J Physiol Cell Physiol
, vol.305
, Issue.5
, pp. C519-C528
-
-
Aslan, J.E.1
Baker, S.M.2
Loren, C.P.3
-
18
-
-
84879079136
-
P21 activated kinase signaling coordinates glycoprotein receptor VI-mediated platelet aggregation, lamellipodia formation, and aggregate stability under shear
-
Aslan JE, Itakura A, Haley KM, et al. p21 activated kinase signaling coordinates glycoprotein receptor VI-mediated platelet aggregation, lamellipodia formation, and aggregate stability under shear. Arterioscler Thromb Vasc Biol. 2013;33(7):1544-1551.
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, Issue.7
, pp. 1544-1551
-
-
Aslan, J.E.1
Itakura, A.2
Haley, K.M.3
-
19
-
-
58849159111
-
Activation of PAK1/2 during the shedding of platelet microvesicles
-
Crespin M, Vidal C, Picard F, Lacombe C, Fontenay M. Activation of PAK1/2 during the shedding of platelet microvesicles. Blood Coagul Fibrinolysis. 2009;20(1):63-70.
-
(2009)
Blood Coagul Fibrinolysis
, vol.20
, Issue.1
, pp. 63-70
-
-
Crespin, M.1
Vidal, C.2
Picard, F.3
Lacombe, C.4
Fontenay, M.5
-
20
-
-
0035895076
-
Rac, a small guanosine triphosphate-binding protein, and p21-activated kinase are activated during platelet spreading on collagen-coated surfaces: Roles of integrin alpha(2)beta(1)
-
Suzuki-Inoue K, Yatomi Y, Asazuma N, et al. Rac, a small guanosine triphosphate-binding protein, and p21-activated kinase are activated during platelet spreading on collagen-coated surfaces: roles of integrin alpha(2)beta(1). Blood. 2001; 98(13):3708-3716.
-
(2001)
Blood
, vol.98
, Issue.13
, pp. 3708-3716
-
-
Suzuki-Inoue, K.1
Yatomi, Y.2
Asazuma, N.3
-
21
-
-
0037114750
-
Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: Implication of the cortical-actin binding protein cortactin
-
Vidal C, Geny B, Melle J, Jandrot-Perrus M, Fontenay-Roupie M. Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood. 2002;100(13):4462-4469.
-
(2002)
Blood
, vol.100
, Issue.13
, pp. 4462-4469
-
-
Vidal, C.1
Geny, B.2
Melle, J.3
Jandrot-Perrus, M.4
Fontenay-Roupie, M.5
-
22
-
-
0028842508
-
Identification and molecular cloning of a p21cdc42/rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets
-
Teo M, Manser E, Lim L. Identification and molecular cloning of a p21cdc42/rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets. J Biol Chem. 1995;270(44): 26690-26697.
-
(1995)
J Biol Chem
, vol.270
, Issue.44
, pp. 26690-26697
-
-
Teo, M.1
Manser, E.2
Lim, L.3
-
23
-
-
34447648178
-
Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation
-
Akbar H, Kim J, Funk K, et al. Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation. J Thromb Haemost. 2007;5(8): 1747-1755.
-
(2007)
J Thromb Haemost
, vol.5
, Issue.8
, pp. 1747-1755
-
-
Akbar, H.1
Kim, J.2
Funk, K.3
-
24
-
-
79960567744
-
Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation
-
Akbar H, Shang X, Perveen R, et al. Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS ONE. 2011;6(7): e22117.
-
(2011)
PLoS ONE
, vol.6
, Issue.7
, pp. e22117
-
-
Akbar, H.1
Shang, X.2
Perveen, R.3
-
25
-
-
84888242635
-
Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42
-
Pleines I, Dütting S, Cherpokova D, et al. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42. Blood. 2013;122(18):3178-3187.
-
(2013)
Blood
, vol.122
, Issue.18
, pp. 3178-3187
-
-
Pleines, I.1
Dütting, S.2
Cherpokova, D.3
-
26
-
-
84866503986
-
Group I p21-activated kinases (PAKs) promote tumor cell proliferation and survival through the AKT1 and Raf-MAPK pathways
-
Menges CW, Sementino E, Talarchek J, et al. Group I p21-activated kinases (PAKs) promote tumor cell proliferation and survival through the AKT1 and Raf-MAPK pathways. Mol Cancer Res. 2012;10(9):1178-1188.
-
(2012)
Mol Cancer Res
, vol.10
, Issue.9
, pp. 1178-1188
-
-
Menges, C.W.1
Sementino, E.2
Talarchek, J.3
-
27
-
-
41949100602
-
An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase
-
Deacon SW, Beeser A, Fukui JA, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008;15(4):322-331.
-
(2008)
Chem Biol
, vol.15
, Issue.4
, pp. 322-331
-
-
Deacon, S.W.1
Beeser, A.2
Fukui, J.A.3
-
28
-
-
84885117132
-
FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas
-
Licciulli S, Maksimoska J, Zhou C, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem. 2013;288(40): 29105-29114.
-
(2013)
J Biol Chem
, vol.288
, Issue.40
, pp. 29105-29114
-
-
Licciulli, S.1
Maksimoska, J.2
Zhou, C.3
-
29
-
-
84877293970
-
P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma
-
Ong CC, Jubb AM, Jakubiak D, et al. P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. J Natl Cancer Inst. 2013;105(9):606-607.
-
(2013)
J Natl Cancer Inst
, vol.105
, Issue.9
, pp. 606-607
-
-
Ong, C.C.1
Jubb, A.M.2
Jakubiak, D.3
-
31
-
-
0029155706
-
Inducible gene targeting in mice
-
Kühn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995; 269(5229):1427-1429.
-
(1995)
Science
, vol.269
, Issue.5229
, pp. 1427-1429
-
-
Kühn, R.1
Schwenk, F.2
Aguet, M.3
Rajewsky, K.4
-
32
-
-
84900471535
-
Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation
-
Phee H, Au-Yeung BB, Pryshchep O, et al. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. eLife. 2014;3:e02270.
-
(2014)
ELife
, vol.3
, pp. e02270
-
-
Phee, H.1
Au-Yeung, B.B.2
Pryshchep, O.3
-
33
-
-
84923039983
-
Group I Paks as therapeutic targets in NF2-deficient meningioma
-
Chow HY, Dong B, Duron SG, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6(4):1981-1994.
-
(2015)
Oncotarget
, vol.6
, Issue.4
, pp. 1981-1994
-
-
Chow, H.Y.1
Dong, B.2
Duron, S.G.3
-
34
-
-
42249096281
-
Rapid platelet turnover in WASP(-) mice correlates with increased ex vivo phagocytosis of opsonized WASP(-) platelets
-
Prislovsky A, Marathe B, Hosni A, et al. Rapid platelet turnover in WASP(-) mice correlates with increased ex vivo phagocytosis of opsonized WASP(-) platelets. Exp Hematol. 2008;36(5): 609-623.
-
(2008)
Exp Hematol
, vol.36
, Issue.5
, pp. 609-623
-
-
Prislovsky, A.1
Marathe, B.2
Hosni, A.3
-
35
-
-
84856068314
-
Calciumand integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration
-
Kostyak JC, Naik MU, Naik UP. Calciumand integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration. Blood. 2012;119(3):838-846.
-
(2012)
Blood
, vol.119
, Issue.3
, pp. 838-846
-
-
Kostyak, J.C.1
Naik, M.U.2
Naik, U.P.3
-
36
-
-
34848896359
-
Månsson R, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
-
Pronk CJ, Rossi DJ, Månsson R, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 2007;1(4):428-442.
-
(2007)
Cell Stem Cell
, vol.1
, Issue.4
, pp. 428-442
-
-
Pronk, C.J.1
Rossi, D.J.2
-
37
-
-
63849230362
-
P21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics
-
Allen JD, Jaffer ZM, Park SJ, et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood. 2009;113(12):2695-2705.
-
(2009)
Blood
, vol.113
, Issue.12
, pp. 2695-2705
-
-
Allen, J.D.1
Jaffer, Z.M.2
Park, S.J.3
-
38
-
-
55549119209
-
Scaffolding function of PAK in the PDK1-Akt pathway
-
Higuchi M, Onishi K, Kikuchi C, Gotoh Y. Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol. 2008;10(11):1356-1364.
-
(2008)
Nat Cell Biol
, vol.10
, Issue.11
, pp. 1356-1364
-
-
Higuchi, M.1
Onishi, K.2
Kikuchi, C.3
Gotoh, Y.4
-
39
-
-
84870888144
-
A Pak1-PP2A-ERM signaling axis mediates F-actin rearrangement and degranulation in mast cells
-
Staser K, Shew MA, Michels EG, et al. A Pak1-PP2A-ERM signaling axis mediates F-actin rearrangement and degranulation in mast cells. Exp Hematol. 2013;41(1):56-66.
-
(2013)
Exp Hematol
, vol.41
, Issue.1
, pp. 56-66
-
-
Staser, K.1
Shew, M.A.2
Michels, E.G.3
-
40
-
-
84920592539
-
Gq-mediated Akt translocation to the membrane: A novel PIP3-independent mechanism in platelets
-
Badolia R, Manne BK, Dangelmaier C, Chernoff J, Kunapuli SP. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets. Blood. 2015;125(1): 175-184.
-
(2015)
Blood
, vol.125
, Issue.1
, pp. 175-184
-
-
Badolia, R.1
Manne, B.K.2
Dangelmaier, C.3
Chernoff, J.4
Kunapuli, S.P.5
-
41
-
-
0022819747
-
Thiazole orange: A new dye for reticulocyte analysis
-
Lee LG, Chen CH, Chiu LA. Thiazole orange: a new dye for reticulocyte analysis. Cytometry. 1986;7(6):508-517.
-
(1986)
Cytometry
, vol.7
, Issue.6
, pp. 508-517
-
-
Lee, L.G.1
Chen, C.H.2
Chiu, L.A.3
-
42
-
-
0032708320
-
Pathophysiological significance of simultaneous measurement of reticulated platelets, large platelets and serum thrombopoietin in non-neoplastic thrombocytopenic disorders
-
Koh KR, Yamane T, Ohta K, Hino M, Takubo T, Tatsumi N. Pathophysiological significance of simultaneous measurement of reticulated platelets, large platelets and serum thrombopoietin in non-neoplastic thrombocytopenic disorders. Eur J Haematol. 1999;63(5):295-301.
-
(1999)
Eur J Haematol
, vol.63
, Issue.5
, pp. 295-301
-
-
Koh, K.R.1
Yamane, T.2
Ohta, K.3
Hino, M.4
Takubo, T.5
Tatsumi, N.6
-
43
-
-
49349102948
-
Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease
-
Guthikonda S, Alviar CL, Vaduganathan M, et al. Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. JAm Coll Cardiol. 2008;52(9):743-749.
-
(2008)
JAm Coll Cardiol
, vol.52
, Issue.9
, pp. 743-749
-
-
Guthikonda, S.1
Alviar, C.L.2
Vaduganathan, M.3
-
44
-
-
0016910150
-
Biology of megakaryocytes
-
Ebbe S. Biology of megakaryocytes. Prog Hemost Thromb. 1976;3:211-229.
-
(1976)
Prog Hemost Thromb
, vol.3
, pp. 211-229
-
-
Ebbe, S.1
-
45
-
-
84898057074
-
Interpreting the developmental dance of the megakaryocyte: A review of the cellular and molecular processes mediating platelet formation
-
Machlus KR, Thon JN, Italiano JE Jr. Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol. 2014; 165(2):227-236.
-
(2014)
Br J Haematol
, vol.165
, Issue.2
, pp. 227-236
-
-
Machlus, K.R.1
Thon, J.N.2
Italiano, J.E.3
-
46
-
-
84869225094
-
P21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model
-
Chow HY, Jubb AM, Koch JN, et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012;72(22):5966-5975.
-
(2012)
Cancer Res
, vol.72
, Issue.22
, pp. 5966-5975
-
-
Chow, H.Y.1
Jubb, A.M.2
Koch, J.N.3
-
47
-
-
67651097663
-
PAK signaling in oncogenesis
-
Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R. PAK signaling in oncogenesis. Oncogene. 2009;28(28):2545-2555.
-
(2009)
Oncogene
, vol.28
, Issue.28
, pp. 2545-2555
-
-
Molli, P.R.1
Li, D.Q.2
Murray, B.W.3
Rayala, S.K.4
Kumar, R.5
-
48
-
-
28844485066
-
Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes
-
Patel SR, Richardson JL, Schulze H, et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood. 2005;106(13): 4076-4085.
-
(2005)
Blood
, vol.106
, Issue.13
, pp. 4076-4085
-
-
Patel, S.R.1
Richardson, J.L.2
Schulze, H.3
-
49
-
-
47149112769
-
Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules
-
Patel-Hett S, Richardson JL, Schulze H, et al. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood. 2008;111(9): 4605-4616.
-
(2008)
Blood
, vol.111
, Issue.9
, pp. 4605-4616
-
-
Patel-Hett, S.1
Richardson, J.L.2
Schulze, H.3
-
50
-
-
0025541116
-
Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation
-
Tablin F, Castro M, Leven RM. Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation. J Cell Sci. 1990; 97(Pt 1):59-70.
-
(1990)
J Cell Sci
, vol.97
, pp. 59-70
-
-
Tablin, F.1
Castro, M.2
Leven, R.M.3
-
51
-
-
84879101332
-
PAK family kinases: Physiological roles and regulation
-
Zhao ZS, Manser E. PAK family kinases: Physiological roles and regulation. Cell Logist. 2012;2(2):59-68.
-
(2012)
Cell Logist
, vol.2
, Issue.2
, pp. 59-68
-
-
Zhao, Z.S.1
Manser, E.2
-
52
-
-
0031947131
-
Inhibition of actin polymerization by cytochalasin B induces polyploidization and increases the number of nucleolar organizer regions in human megakaryocyte cell lines
-
Baatout S, Chatelain B, Staquet P, Symann M, Chatelain C. Inhibition of actin polymerization by cytochalasin B induces polyploidization and increases the number of nucleolar organizer regions in human megakaryocyte cell lines. Anticancer Res. 1998;18(1A):459-464.
-
(1998)
Anticancer Res
, vol.18
, Issue.1 A
, pp. 459-464
-
-
Baatout, S.1
Chatelain, B.2
Staquet, P.3
Symann, M.4
Chatelain, C.5
-
53
-
-
0031826985
-
Inhibition of tubulin polymerization in megakaryocyte cell lines leads to polyploidization which affects the metabolism of actin
-
Baatout S, Chatelain B, Staquet P, Symann M, Chatelain C. Inhibition of tubulin polymerization in megakaryocyte cell lines leads to polyploidization which affects the metabolism of actin. Anticancer Res. 1998;18(3A):1553-1561.
-
(1998)
Anticancer Res
, vol.18
, Issue.3 A
, pp. 1553-1561
-
-
Baatout, S.1
Chatelain, B.2
Staquet, P.3
Symann, M.4
Chatelain, C.5
-
54
-
-
0027370523
-
Antimicrotubule agents induce polyploidization of human leukaemic cell lines with megakaryocytic features
-
van der Loo B, Hong Y, Hancock V, Martin JF, Erusalimsky JD. Antimicrotubule agents induce polyploidization of human leukaemic cell lines with megakaryocytic features. Eur J Clin Invest. 1993; 23(10):621-629.
-
(1993)
Eur J Clin Invest
, vol.23
, Issue.10
, pp. 621-629
-
-
Van Der, L.B.1
Hong, Y.2
Hancock, V.3
Martin, J.F.4
Erusalimsky, J.D.5
-
55
-
-
34948903242
-
Inactivation of Rho GTPases with Clostridium difficile toxin B impairs centrosomal activation of Aurora-A in G2/M transition of HeLa cells
-
Ando Y, Yasuda S, Oceguera-Yanez F, Narumiya S. Inactivation of Rho GTPases with Clostridium difficile toxin B impairs centrosomal activation of Aurora-A in G2/M transition of HeLa cells. Mol Biol Cell. 2007;18(10):3752-3763.
-
(2007)
Mol Biol Cell
, vol.18
, Issue.10
, pp. 3752-3763
-
-
Ando, Y.1
Yasuda, S.2
Oceguera-Yanez, F.3
Narumiya, S.4
-
56
-
-
84864621502
-
Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL
-
Wen Q, Goldenson B, Silver SJ, et al. Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL. Cell. 2012;150(3):575-589.
-
(2012)
Cell
, vol.150
, Issue.3
, pp. 575-589
-
-
Wen, Q.1
Goldenson, B.2
Silver, S.J.3
-
57
-
-
84926209407
-
Aurora kinase A is required for hematopoiesis, but is dispensable for murine megakaryocyte endomitosis and differentiation
-
Feb
-
Goldenson B, Kirsammer G, Stankiewicz MJ, Wen QJ, Crispino JD. Aurora kinase A is required for hematopoiesis, but is dispensable for murine megakaryocyte endomitosis and differentiation. Blood. 2015;(Feb):10.
-
(2015)
Blood
, pp. 10
-
-
Goldenson, B.1
Kirsammer, G.2
Stankiewicz, M.J.3
Wen, Q.J.4
Crispino, J.D.5
-
58
-
-
84869236762
-
Optimizing megakaryocyte polyploidization by targeting multiple pathways of cytokinesis
-
Avanzi MP, Chen A, He W, Mitchell WB. Optimizing megakaryocyte polyploidization by targeting multiple pathways of cytokinesis. Transfusion. 2012;52(11):2406-2413.
-
(2012)
Transfusion
, vol.52
, Issue.11
, pp. 2406-2413
-
-
Avanzi, M.P.1
Chen, A.2
He, W.3
Mitchell, W.B.4
-
59
-
-
54049128933
-
Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling
-
Lordier L, Jalil A, Aurade F, et al. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood. 2008;112(8):3164-3174.
-
(2008)
Blood
, vol.112
, Issue.8
, pp. 3164-3174
-
-
Lordier, L.1
Jalil, A.2
Aurade, F.3
-
60
-
-
77957702911
-
Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process
-
Lordier L, Chang Y, Jalil A, et al. Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process. Blood. 2010;116(13):2345-2355.
-
(2010)
Blood
, vol.116
, Issue.13
, pp. 2345-2355
-
-
Lordier, L.1
Chang, Y.2
Jalil, A.3
-
61
-
-
33644749305
-
Endomitotic megakaryocytes form a midzone in anaphase but have a deficiency in cleavage furrow formation
-
Geddis AE, Kaushansky K. Endomitotic megakaryocytes form a midzone in anaphase but have a deficiency in cleavage furrow formation. Cell Cycle. 2006;5(5):538-545.
-
(2006)
Cell Cycle
, vol.5
, Issue.5
, pp. 538-545
-
-
Geddis, A.E.1
Kaushansky, K.2
-
62
-
-
77956607977
-
ADF/ncofilin-dependent actin turnover determines platelet formation and sizing
-
Bender M, Eckly A, Hartwig JH, et al. ADF/ncofilin-dependent actin turnover determines platelet formation and sizing. Blood. 2010; 116(10):1767-1775.
-
(2010)
Blood
, vol.116
, Issue.10
, pp. 1767-1775
-
-
Bender, M.1
Eckly, A.2
Hartwig, J.H.3
-
63
-
-
84903881395
-
LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2
-
Petrilli A, Copik A, Posadas M, et al. LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2. Oncogene. 2014; 33(27):3571-3582.
-
(2014)
Oncogene
, vol.33
, Issue.27
, pp. 3571-3582
-
-
Petrilli, A.1
Copik, A.2
Posadas, M.3
-
64
-
-
84865745556
-
Pharmacological inhibition of LIM kinase stabilizes microtubules and inhibits neoplastic growth
-
Prudent R, Vassal-Stermann E, Nguyen CH, et al. Pharmacological inhibition of LIM kinase stabilizes microtubules and inhibits neoplastic growth. Cancer Res. 2012;72(17):4429-4439.
-
(2012)
Cancer Res
, vol.72
, Issue.17
, pp. 4429-4439
-
-
Prudent, R.1
Vassal-Stermann, E.2
Nguyen, C.H.3
-
65
-
-
84928551116
-
Pak2 regulates hematopoietic progenitor cell proliferation, survival and differentiation
-
Jan
-
Zeng Y, Broxmeyer HE, Staser K, et al. Pak2 regulates hematopoietic progenitor cell proliferation, survival and differentiation. Stem Cells. 2015;(Jan):13.
-
(2015)
Stem Cells
, pp. 13
-
-
Zeng, Y.1
Broxmeyer, H.E.2
Staser, K.3
-
66
-
-
33846911975
-
Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo
-
Tiedt R, Schomber T, Hao-Shen H, Skoda RC. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood. 2007;109(4):1503-1506.
-
(2007)
Blood
, vol.109
, Issue.4
, pp. 1503-1506
-
-
Tiedt, R.1
Schomber, T.2
Hao-Shen, H.3
Skoda, R.C.4
|