메뉴 건너뛰기




Volumn 37, Issue 9, 2016, Pages 3282-3296

High-order resting-state functional connectivity network for MCI classification

Author keywords

brain disease diagnosis; functional connectivity; low order and high order networks; mild cognitive impairment

Indexed keywords

AGED; ARTICLE; BRAIN REGION; CLINICAL ARTICLE; CONNECTOME; CONTROLLED STUDY; CORRELATION ANALYSIS; DIAGNOSTIC ACCURACY; DISEASE CLASSIFICATION; FEMALE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; MALE; MILD COGNITIVE IMPAIRMENT; PRIORITY JOURNAL; RESTING STATE NETWORK; TIME SERIES ANALYSIS;

EID: 84982893690     PISSN: 10659471     EISSN: 10970193     Source Type: Journal    
DOI: 10.1002/hbm.23240     Document Type: Article
Times cited : (208)

References (67)
  • 3
    • 84858225391 scopus 로고    scopus 로고
    • 2012 Alzheimer's disease facts and figures
    • Association AS (2012): 2012 Alzheimer's disease facts and figures. Alzheimer's Dement 8:131–168.
    • (2012) Alzheimer's Dement , vol.8 , pp. 131-168
    • Association, A.S.1
  • 6
    • 34249697099 scopus 로고    scopus 로고
    • Forecasting the global burden of Alzheimer's disease. Alzheimer's
    • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007): Forecasting the global burden of Alzheimer's disease. Alzheimer's Dement 3:186–191.
    • (2007) Dement , vol.3 , pp. 186-191
    • Brookmeyer, R.1    Johnson, E.2    Ziegler-Graham, K.3    Arrighi, H.M.4
  • 8
    • 84874541551 scopus 로고    scopus 로고
    • EEG correlates of time-varying BOLD functional connectivity
    • Chang C, Liu Z, Chen MC, Liu X, Duyn JH (2013): EEG correlates of time-varying BOLD functional connectivity. Neuroimage 72:227–236.
    • (2013) Neuroimage , vol.72 , pp. 227-236
    • Chang, C.1    Liu, Z.2    Chen, M.C.3    Liu, X.4    Duyn, J.H.5
  • 9
    • 79958810411 scopus 로고    scopus 로고
    • Recursive projection twin support vector machine via within-class variance minimization
    • Chen X, Yang J, Ye Q, Liang J (2011): Recursive projection twin support vector machine via within-class variance minimization. Pattern Recognit 44:2643–2655.
    • (2011) Pattern Recognit , vol.44 , pp. 2643-2655
    • Chen, X.1    Yang, J.2    Ye, Q.3    Liang, J.4
  • 10
    • 84908479126 scopus 로고    scopus 로고
    • Structural max-margin discriminant analysis for feature extraction
    • Chen X, Xiao Y, Cai Y, Chen L (2014): Structural max-margin discriminant analysis for feature extraction. Knowl Based Syst 70:154–166.
    • (2014) Knowl Based Syst , vol.70 , pp. 154-166
    • Chen, X.1    Xiao, Y.2    Cai, Y.3    Chen, L.4
  • 11
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995): Support-vector networks. Mach Learn 20:273–297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    • Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, Chupin M, Benali H, Colliot O; Alzheimer's Disease Neuroimaging Initiative (2011): Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage 56:766–781.
    • (2011) Neuroimage , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehéricy, S.5    Habert, M.O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 14
    • 84893766307 scopus 로고    scopus 로고
    • The joint graphical lasso for inverse covariance estimation across multiple classes
    • Danaher P, Wang P, Witten DM (2014): The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc Ser B (Stat Methodol) 76:373–397.
    • (2014) J R Stat Soc Ser B (Stat Methodol) , vol.76 , pp. 373-397
    • Danaher, P.1    Wang, P.2    Witten, D.M.3
  • 15
    • 80053654021 scopus 로고    scopus 로고
    • Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    • Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2011): Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging 32:2322.e19–2322.e27.
    • (2011) Neurobiol Aging , vol.32 , pp. 2322.e19-2322.e27
    • Davatzikos, C.1    Bhatt, P.2    Shaw, L.M.3    Batmanghelich, K.N.4    Trojanowski, J.Q.5
  • 16
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong ER, DeLong DM, Clarke-Pearson DL (1988): Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 837–845.
    • (1988) Biometrics , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 19
    • 66349133709 scopus 로고    scopus 로고
    • The global signal and observed anticorrelated resting state brain networks
    • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009): The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283.
    • (2009) J Neurophysiol , vol.101 , pp. 3270-3283
    • Fox, M.D.1    Zhang, D.2    Snyder, A.Z.3    Raichle, M.E.4
  • 20
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R (2008): Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 0027441566 scopus 로고
    • Functional connectivity: The principal-component analysis of large (PET) data sets
    • Friston K, Frith C, Liddle P, Frackowiak R (1993): Functional connectivity: The principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14.
    • (1993) J Cereb Blood Flow Metab , vol.13 , pp. 5-14
    • Friston, K.1    Frith, C.2    Liddle, P.3    Frackowiak, R.4
  • 23
    • 84911929895 scopus 로고    scopus 로고
    • Maximizing Negative Correlations in Resting-State Functional Connectivity MRI by Time-Lag
    • Goelman G, Gordon N, Bonne O (2014): Maximizing Negative Correlations in Resting-State Functional Connectivity MRI by Time-Lag. PLoS One 9:15.
    • (2014) PLoS One , vol.9
    • Goelman, G.1    Gordon, N.2    Bonne, O.3
  • 25
    • 52049121840 scopus 로고    scopus 로고
    • Resting-state functional connectivity in neuropsychiatric disorders
    • Greicius M (2008): Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424–430.
    • (2008) Curr Opin Neurol , vol.21 , pp. 424-430
    • Greicius, M.1
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR (2006): Reducing the dimensionality of data with neural networks. Science 313:504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 28
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh YW (2006): A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 29
    • 77249118678 scopus 로고    scopus 로고
    • Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation
    • Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, Chen K, Reiman E; Alzheimer's Disease Neuroimaging Initiative (2010): Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. NeuroImage 50:935–949.
    • (2010) NeuroImage , vol.50 , pp. 935-949
    • Huang, S.1    Li, J.2    Sun, L.3    Ye, J.4    Fleisher, A.5    Wu, T.6    Chen, K.7    Reiman, E.8
  • 32
    • 82855161410 scopus 로고    scopus 로고
    • Parietal cortex matters in Alzheimer's disease: An overview of structural, functional and metabolic findings
    • Jacobs HI, Van Boxtel MP, Jolles J, Verhey FR, Uylings HB (2012): Parietal cortex matters in Alzheimer's disease: An overview of structural, functional and metabolic findings. Neurosci Biobehav Rev 36:297–309.
    • (2012) Neurosci Biobehav Rev , vol.36 , pp. 297-309
    • Jacobs, H.I.1    Van Boxtel, M.P.2    Jolles, J.3    Verhey, F.R.4    Uylings, H.B.5
  • 34
    • 84893330870 scopus 로고    scopus 로고
    • Integration of network topological and connectivity properties for neuroimaging classification
    • Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D (2014b): Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng 61:576–589.
    • (2014) IEEE Trans Biomed Eng , vol.61 , pp. 576-589
    • Jie, B.1    Zhang, D.2    Gao, W.3    Wang, Q.4    Wee, C.Y.5    Shen, D.6
  • 35
    • 84878491154 scopus 로고    scopus 로고
    • Phospholipids and Alzheimer's disease: Alterations, mechanisms and potential biomarkers
    • Kosicek M, Hecimovic S (2013): Phospholipids and Alzheimer's disease: Alterations, mechanisms and potential biomarkers. Int J Mol Sci 14:1310–1322.
    • (2013) Int J Mol Sci , vol.14 , pp. 1310-1322
    • Kosicek, M.1    Hecimovic, S.2
  • 37
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P (1998): Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2324.
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 42
    • 0021271971 scopus 로고
    • Clinical diagnosis of Alzheimer's disease Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
    • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984): Clinical diagnosis of Alzheimer's disease Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–939.
    • (1984) Neurology , vol.34 , pp. 939
    • McKhann, G.1    Drachman, D.2    Folstein, M.3    Katzman, R.4    Price, D.5    Stadlan, E.M.6
  • 44
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov M, Sporns O (2010): Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52:1059–1069.
    • (2010) Neuroimage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 46
    • 84946568091 scopus 로고    scopus 로고
    • Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: A machine learning approach
    • Salvatore C, Cerasa A, Battista P, Gilardi MC, Quattrone A, Castiglioni I; Alzheimer's Disease Neuroimaging Initiative (2015): Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: A machine learning approach. Front Neurosci 9:307.
    • (2015) Front Neurosci , vol.9 , pp. 307
    • Salvatore, C.1    Cerasa, A.2    Battista, P.3    Gilardi, M.C.4    Quattrone, A.5    Castiglioni, I.6
  • 47
    • 84902476794 scopus 로고    scopus 로고
    • A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment
    • Seixas FL, Zadrozny B, Laks J, Conci A, Saade DCM (2014): A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment. Comput Biol Med 51:140–158.
    • (2014) Comput Biol Med , vol.51 , pp. 140-158
    • Seixas, F.L.1    Zadrozny, B.2    Laks, J.3    Conci, A.4    Saade, D.C.M.5
  • 50
    • 79954516559 scopus 로고    scopus 로고
    • The human connectome: A complex network
    • Sporns O (2011): The human connectome: A complex network. Ann N Y Acad Sci 1224:109–125.
    • (2011) Ann N Y Acad Sci , vol.1224 , pp. 109-125
    • Sporns, O.1
  • 51
    • 84923814844 scopus 로고    scopus 로고
    • Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
    • Suk HI, Lee SW, Shen D; Alzheimer's Disease Neuroimaging Initiative (2013): Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct 220:841–859.
    • (2013) Brain Struct Funct , vol.220 , pp. 841-859
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 52
  • 53
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
    • Suk HI, Lee SW, Shen D; Alzheimer's Disease Neuroimaging Initiative (2014b): Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101:569–582.
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.I.1    Lee, S.W.2    Shen, D.3
  • 54
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R (1996): Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58:267–288.
    • (1996) J R Stat Soc Ser B (Methodol) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 56
    • 59949083745 scopus 로고    scopus 로고
    • Functional connectivity of default mode network components: Correlation, anticorrelation, and causality
    • Uddin LQ, Clare Kelly A, Biswal BB, Xavier Castellanos F, Milham MP (2009): Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum brain Mapp 30:625–637.
    • (2009) Hum brain Mapp , vol.30 , pp. 625-637
    • Uddin, L.Q.1    Clare Kelly, A.2    Biswal, B.B.3    Xavier Castellanos, F.4    Milham, M.P.5
  • 58
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward JH Jr (1963): Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244.
    • (1963) J Am Stat Assoc , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 59
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of ‘small-world’ networks
    • Watts DJ, Strogatz SH (1998): Collective dynamics of ‘small-world’ networks. Nature 393:440–442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 63
    • 84933566531 scopus 로고    scopus 로고
    • Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification
    • Wee CY, Yang S, Yap PT, Shen D, Alzheimer's Disease Neuroimaging Initiative (2015): Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging Behav 1–15, doi:10.1007/s11682-015-9408-2.
    • (2015) Brain Imaging Behav , pp. 1-15
    • Wee, C.Y.1    Yang, S.2    Yap, P.T.3    Shen, D.4
  • 66
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Zhang D, Wang Y, Zhou L, Yuan H, Shen D, Alzheimer's Disease Neuroimaging Initiative (2011): Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 55:856–867.
    • (2011) Neuroimage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.