메뉴 건너뛰기




Volumn 25, Issue 2, 2015, Pages 916-943

Fused multiple graphical lasso

Author keywords

Fused multiple graphical lasso; Screening; Second order method

Indexed keywords

NEURODEGENERATIVE DISEASES; NEUROIMAGING; SCREENING;

EID: 84940386483     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/130936397     Document Type: Article
Times cited : (82)

References (56)
  • 1
    • 0000654477 scopus 로고
    • Patterns of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer type
    • N. P. Azari, S. I. Rapoport, C. L. Grady, M. B. Schapiro, J. A. Salerno, A. Gonzales-Aviles, and B. Horwitz, Patterns of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer type, Neurodegeneration, 1 (1992), pp. 101-111.
    • (1992) Neurodegeneration , vol.1 , pp. 101-111
    • Azari, N.P.1    Rapoport, S.I.2    Grady, C.L.3    Schapiro, M.B.4    Salerno, J.A.5    Gonzales-Aviles, A.6    Horwitz, B.7
  • 2
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont, Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data, J. Mach. Learning Res., 9 (2008), pp. 485-516.
    • (2008) J. Mach. Learning Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 4
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learning, 3 (2011), pp. 1-122.
    • (2011) Found. Trends Mach. Learning , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 6
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee, and T. Ideker, Network-based classification of breast cancer metastasis, Mol. Syst. Biol., 3 (2007), doi: 10.1038/msb4100180.
    • (2007) Mol. Syst. Biol. , vol.3
    • Chuang, H.Y.1    Lee, E.2    Liu, Y.T.3    Lee, D.4    Ideker, T.5
  • 7
    • 84884390219 scopus 로고    scopus 로고
    • A direct algorithm for 1d total variation denoising
    • L. Condat, A direct algorithm for 1d total variation denoising, Signal Process. Lett., 20 (2013), pp. 1054-1057.
    • (2013) Signal Process. Lett. , vol.20 , pp. 1054-1057
    • Condat, L.1
  • 8
    • 84893766307 scopus 로고    scopus 로고
    • The joint graphical lasso for inverse covariance estimation across multiple classes
    • P. Danaher, P. Wang, and D. M. Witten, The joint graphical lasso for inverse covariance estimation across multiple classes, J. Roy. Statist. Soc. Ser. B, 76 (2014), pp. 373-397.
    • (2014) J. Roy. Statist. Soc. Ser. B , vol.76 , pp. 373-397
    • Danaher, P.1    Wang, P.2    Witten, D.M.3
  • 11
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9 (2008), pp. 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 79952164560 scopus 로고    scopus 로고
    • Joint estimation of multiple graphical models
    • J. Guo, E. Levina, G. Michailidis, and J. Zhu, Joint estimation of multiple graphical models, Biometrika, 98 (2011), pp. 1-15.
    • (2011) Biometrika , vol.98 , pp. 1-15
    • Guo, J.1    Levina, E.2    Michailidis, G.3    Zhu, J.4
  • 13
    • 80052394814 scopus 로고    scopus 로고
    • Common substructure learning of multiple graphical Gaussian models
    • S. Hara and T. Washio, Common substructure learning of multiple graphical Gaussian models, MLKDD, (2011), pp. 1-16.
    • (2011) MLKDD , pp. 1-16
    • Hara, S.1    Washio, T.2
  • 15
    • 0023191278 scopus 로고
    • Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer's disease
    • B. Horwitz, C. L. Grady, N. L. Schlageter, R. Duara, and S. I. Rapoport, Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer's disease, Brain Res., 407 (1987), pp. 294-306.
    • (1987) Brain Res. , vol.407 , pp. 294-306
    • Horwitz, B.1    Grady, C.L.2    Schlageter, N.L.3    Duara, R.4    Rapoport, S.I.5
  • 19
    • 84867309078 scopus 로고    scopus 로고
    • An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP
    • K. Jiang, D. Sun, and K.-C. Toh, An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP, SIAM J. Optim., 22 (2012), pp. 1042-1064.
    • (2012) SIAM J. Optim. , vol.22 , pp. 1042-1064
    • Jiang, K.1    Sun, D.2    Toh, K.-C.3
  • 20
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, Cambridge, MA
    • T. Joachims, Making large-scale support vector machine learning practical, in Advances in Kernel Methods, MIT Press, Cambridge, MA, 1999, pp. 169-184.
    • (1999) Advances in Kernel Methods , pp. 169-184
    • Joachims, T.1
  • 23
    • 84910594199 scopus 로고    scopus 로고
    • Proximal Newton-type methods for minimizing composite functions
    • J. D. Lee, Y. Sun, and M. A. Saunders, Proximal Newton-type methods for minimizing composite functions, SIAM J. Optim., 24 (2014), pp. 1420-1443.
    • (2014) SIAM J. Optim. , vol.24 , pp. 1420-1443
    • Lee, J.D.1    Sun, Y.2    Saunders, M.A.3
  • 24
    • 84860633052 scopus 로고    scopus 로고
    • An inexact interior point method for l1-regularized sparse covariance selection
    • L. Li and K. C. Toh, An inexact interior point method for l1-regularized sparse covariance selection, Math, Program, Comput., 2 (2010), pp. 291-315.
    • (2010) Math, Program, Comput. , vol.2 , pp. 291-315
    • Li, L.1    Toh, K.C.2
  • 28
    • 70450200096 scopus 로고    scopus 로고
    • Smooth optimization approach for sparse covariance selection
    • Z. Lu, Smooth optimization approach for sparse covariance selection, SIAM J. Optim., 19 (2009), pp. 1807-1827.
    • (2009) SIAM J. Optim. , vol.19 , pp. 1807-1827
    • Lu, Z.1
  • 29
    • 77956030532 scopus 로고    scopus 로고
    • Adaptive first-order methods for general sparse inverse covariance selection
    • Z. Lu, Adaptive first-order methods for general sparse inverse covariance selection, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2000-2016.
    • (2010) SIAM J. Matrix Anal. Appl. , vol.31 , pp. 2000-2016
    • Lu, Z.1
  • 30
    • 84866263494 scopus 로고    scopus 로고
    • An augmented lagrangian approach for sparse principal component analysis
    • Z. Lu and Y. Zhang, An augmented Lagrangian approach for sparse principal component analysis, Math. Program., 135 (2012), pp. 149-193.
    • (2012) Math. Program. , vol.135 , pp. 149-193
    • Lu, Z.1    Zhang, Y.2
  • 31
    • 84859447804 scopus 로고    scopus 로고
    • Exact covariance thresholding into connected components for large-scale graphical lasso
    • R. Mazumder and T. Hastie, Exact covariance thresholding into connected components for large-scale graphical lasso, J. Mach. Learning Res., 13 (2012), pp. 781-794.
    • (2012) J. Mach. Learning Res. , vol.13 , pp. 781-794
    • Mazumder, R.1    Hastie, T.2
  • 32
    • 84875395423 scopus 로고    scopus 로고
    • The graphical lasso: New insights and alternatives
    • R. Mazumder and T. Hastie, The graphical lasso: New insights and alternatives, Electron. J. Statist., 6 (2012), pp. 2125-2149.
    • (2012) Electron. J. Statist. , vol.6 , pp. 2125-2149
    • Mazumder, R.1    Hastie, T.2
  • 33
    • 84940405320 scopus 로고    scopus 로고
    • The ADHD-200 sample
    • M. P. Milham, The ADHD-200 Sample, fMRI dataset, available online from http://fcon-1000.projects.nitrc.org/indi/adhd200/.
    • FMRI Dataset
    • Milham, M.P.1
  • 34
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann, High-dimensional graphs and variable selection with the lasso, Ann. Statist., 34 (2006), pp. 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 36
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program., 103 (2005), pp. 127-152.
    • (2005) Math. Program. , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 37
    • 34249040506 scopus 로고    scopus 로고
    • Active set identification in nonlinear programming
    • C. Oberlin and S. J. Wright, Active set identification in nonlinear programming, SIAM J. Optim., 17 (2006), pp. 577-605.
    • (2006) SIAM J. Optim. , vol.17 , pp. 577-605
    • Oberlin, C.1    Wright, S.J.2
  • 40
    • 78649406151 scopus 로고    scopus 로고
    • Sinco - A greedy coordinate ascent method for sparse inverse covariance selection problem
    • K. Scheinberg and I. Rish, Sinco - A Greedy Coordinate Ascent Method for Sparse Inverse Covariance Selection Problem, Technical Report IBM RC24837, 2009.
    • (2009) Technical Report IBM RC24837
    • Scheinberg, K.1    Rish, I.2
  • 42
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 44
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable minimization, Math. Program., 117 (2009), pp. 387-423.
    • (2009) Math. Program. , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 45
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot, Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, Neuroimage, 15 (2002), pp. 273-289.
    • (2002) Neuroimage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6    Mazoyer, B.7    Joliot, M.8
  • 46
    • 79251515796 scopus 로고    scopus 로고
    • Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm
    • C. Wang, D. Sun, and K.-C. Toh, Solving log-determinant optimization problems by a Newton-CG primal proximal point algorithm, SIAM J. Optim., 20 (2010), pp. 2994-3013.
    • (2010) SIAM J. Optim. , vol.20 , pp. 2994-3013
    • Wang, C.1    Sun, D.2    Toh, K.-C.3
  • 47
    • 35148890661 scopus 로고    scopus 로고
    • Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study
    • K. Wang, M. Liang, L. Wang, L. Tian, X. Zhang, K. Li, and T. Jiang, Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study, Human Brain Mapping, 28 (2007), pp. 967-978.
    • (2007) Human Brain Mapping , vol.28 , pp. 967-978
    • Wang, K.1    Liang, M.2    Wang, L.3    Tian, L.4    Zhang, X.5    Li, K.6    Jiang, T.7
  • 49
    • 83455181601 scopus 로고    scopus 로고
    • New insights and faster computations for the graphical lasso
    • D. M. Witten, J. H. Friedman, and N. Simon, New insights and faster computations for the graphical lasso, J. Comput. Graph. Statist., 20 (2011), pp. 892-900.
    • (2011) J. Comput. Graph. Statist. , vol.20 , pp. 892-900
    • Witten, D.M.1    Friedman, J.H.2    Simon, N.3
  • 52
    • 84864920041 scopus 로고    scopus 로고
    • An improved GLMNET for l1-regularized logistic regression
    • G. X. Yuan, C. H. Ho, and C. J. Lin, An improved GLMNET for l1-regularized logistic regression, J. Mach. Learning Res., 13 (2012), pp. 1999-2030.
    • (2012) J. Mach. Learning Res. , vol.13 , pp. 1999-2030
    • Yuan, G.X.1    Ho, C.H.2    Lin, C.J.3
  • 53
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J. Roy. Statist. Soc. Ser. B, 68 (2006), pp. 49-67.
    • (2006) J. Roy. Statist. Soc. Ser. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 54
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • M. Yuan and Y. Lin, Model selection and estimation in the Gaussian graphical model, Biometrika, 94 (2007), pp. 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 55
    • 84864128199 scopus 로고    scopus 로고
    • Alternating direction method for covariance selection models
    • X. Yuan, Alternating direction method for covariance selection models, J. Sci. Comput., 51 (2012), pp. 261-273.
    • (2012) J. Sci. Comput. , vol.51 , pp. 261-273
    • Yuan, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.