메뉴 건너뛰기




Volumn 70, Issue , 2014, Pages 154-166

Structural max-margin discriminant analysis for feature extraction

Author keywords

Column generation; Constrained concave convex procedure; Discriminant analysis; Max margin principle; Quadratic programming

Indexed keywords

DIMENSIONALITY REDUCTION; EXTRACTION; FEATURE EXTRACTION; LINEAR PROGRAMMING; QUADRATIC PROGRAMMING;

EID: 84908479126     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2014.06.020     Document Type: Article
Times cited : (9)

References (41)
  • 5
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S.T. Roweis, and L.K. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 6
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B. Tenenbaum, V. Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 13
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis J. Mach. Learn. Res. 8 2007 1027 1061
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 14
    • 36348982900 scopus 로고    scopus 로고
    • Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval
    • D. Xu, S. Yan, D. Tao, S. Lin, and H. Zhang Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval IEEE Trans. Image Process. 16 11 2007 2811 2821
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.11 , pp. 2811-2821
    • Xu, D.1    Yan, S.2    Tao, D.3    Lin, S.4    Zhang, H.5
  • 15
    • 77953616982 scopus 로고    scopus 로고
    • Face recognition using discriminant locality preserving projections based on maximum margin criterion
    • G.F. Lu, Z. Lin, and Z. Jin Face recognition using discriminant locality preserving projections based on maximum margin criterion Pattern Recogn. 43 10 2010 3572 3579
    • (2010) Pattern Recogn. , vol.43 , Issue.10 , pp. 3572-3579
    • Lu, G.F.1    Lin, Z.2    Jin, Z.3
  • 16
    • 38149053032 scopus 로고    scopus 로고
    • Discriminant clustering embedding for face recognition with image sets
    • Y. Zhao, S. Xu, Y. Jia, Discriminant clustering embedding for face recognition with image sets, in: Asian Conference on Computer Vision, 2007, pp. 641-650.
    • (2007) Asian Conference on Computer Vision , pp. 641-650
    • Zhao, Y.1    Xu, S.2    Jia, Y.3
  • 19
    • 84864282565 scopus 로고    scopus 로고
    • Subclass discriminant nonnegative matrix factorization for facial image analysis
    • S. Nikitidis, A. Tefas, N. Nikolaidis, and I. Pitas Subclass discriminant nonnegative matrix factorization for facial image analysis Pattern Recogn. 45 12 2012 4080 4091
    • (2012) Pattern Recogn. , vol.45 , Issue.12 , pp. 4080-4091
    • Nikitidis, S.1    Tefas, A.2    Nikolaidis, N.3    Pitas, I.4
  • 20
    • 79953810586 scopus 로고    scopus 로고
    • Structural regularized support vector machine: A framework for structural large margin classifier
    • H. Xue, S. Chen, and Q. Yang Structural regularized support vector machine: a framework for structural large margin classifier IEEE Trans. Neural Networ. 22 4 2011 573 587
    • (2011) IEEE Trans. Neural Networ. , vol.22 , Issue.4 , pp. 573-587
    • Xue, H.1    Chen, S.2    Yang, Q.3
  • 21
    • 84875271568 scopus 로고    scopus 로고
    • Structural twin support vector machine for classification
    • Z. Qi, Y. Tian, and Y. Shi Structural twin support vector machine for classification Knowl.-Based Syst. 43 2013 74 81
    • (2013) Knowl.-Based Syst. , vol.43 , pp. 74-81
    • Qi, Z.1    Tian, Y.2    Shi, Y.3
  • 22
    • 84879879699 scopus 로고    scopus 로고
    • Structural twin parametric-margin support vector machine for binary classification
    • X. Peng, Y. Wang, and D. Xu Structural twin parametric-margin support vector machine for binary classification Knowl.-Based Syst. 49 2013 63 72
    • (2013) Knowl.-Based Syst. , vol.49 , pp. 63-72
    • Peng, X.1    Wang, Y.2    Xu, D.3
  • 24
    • 80052759348 scopus 로고    scopus 로고
    • Recursive concave-convex fisher linear discriminant with applications to face, handwritten digit and terrain recognition
    • Q. Ye, C. Zhao, H. Zhang, and X. Chen Recursive concave-convex fisher linear discriminant with applications to face, handwritten digit and terrain recognition Pattern Recogn. 45 1 2012 54 65
    • (2012) Pattern Recogn. , vol.45 , Issue.1 , pp. 54-65
    • Ye, Q.1    Zhao, C.2    Zhang, H.3    Chen, X.4
  • 25
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 3 1995 273 297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 26
    • 79958810411 scopus 로고    scopus 로고
    • Recursive projection twin support vector machine via within-class variance minimization
    • X. Chen, J. Yang, Q. Ye, and J. Liang Recursive projection twin support vector machine via within-class variance minimization Pattern Recogn. 44 10-11 2011 2643 2655
    • (2011) Pattern Recogn. , vol.44 , Issue.1011 , pp. 2643-2655
    • Chen, X.1    Yang, J.2    Ye, Q.3    Liang, J.4
  • 27
    • 84865318461 scopus 로고    scopus 로고
    • Recursive Robust least squares support vector regression based on maximum correntropy criterion
    • X. Chen, J. Yang, J. Liang, and Q. Ye Recursive Robust least squares support vector regression based on maximum correntropy criterion Neurocomputing 97 2012 63 73
    • (2012) Neurocomputing , vol.97 , pp. 63-73
    • Chen, X.1    Yang, J.2    Liang, J.3    Ye, Q.4
  • 30
    • 16244377091 scopus 로고    scopus 로고
    • Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms
    • S. Salvador, P. Chan, Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms, in: International Conference on Tools with Artificial Intelligence, 2004, pp. 576-584.
    • (2004) International Conference on Tools with Artificial Intelligence , pp. 576-584
    • Salvador, S.1    Chan, P.2
  • 31
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J.H. Ward Jr. Hierarchical grouping to optimize an objective function J. Am. Stat. Assoc. 58 301 1963 236 244
    • (1963) J. Am. Stat. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 32
    • 84870062149 scopus 로고    scopus 로고
    • A regularization for the projection twin support vector machine
    • Y.H. Shao, Z. Wang, W.J. Chen, and N.Y. Deng A regularization for the projection twin support vector machine Knowl.-Based Syst. 37 2013 203 210
    • (2013) Knowl.-Based Syst. , vol.37 , pp. 203-210
    • Shao, Y.H.1    Wang, Z.2    Chen, W.J.3    Deng, N.Y.4
  • 33
    • 84884205226 scopus 로고    scopus 로고
    • Regularized least squares fisher linear discriminant with applications to image recognition
    • X. Chen, J. Yang, Q. Mao, and F. Han Regularized least squares fisher linear discriminant with applications to image recognition Neurocomputing 122 2013 521 534
    • (2013) Neurocomputing , vol.122 , pp. 521-534
    • Chen, X.1    Yang, J.2    Mao, Q.3    Han, F.4
  • 35
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • A.L. Yuille, and A. Rangarajan The concave-convex procedure Neural Comput. 15 4 2003 915 936
    • (2003) Neural Comput. , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 36
    • 80052397309 scopus 로고    scopus 로고
    • Unsupervised large margin discriminative projection
    • F. Wang, B. Zhao, and C. Zhang Unsupervised large margin discriminative projection IEEE Trans. Neural Networ. 22 9 2011 1446 1456
    • (2011) IEEE Trans. Neural Networ. , vol.22 , Issue.9 , pp. 1446-1456
    • Wang, F.1    Zhao, B.2    Zhang, C.3
  • 40
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Y. Sun, S. Todorovic, and S. Goodison Local-learning-based feature selection for high-dimensional data analysis IEEE Trans. Pattern Anal. Mach. Intell. 32 9 2010 1610 1626
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.9 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.