메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Enhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition

Author keywords

[No Author keywords available]

Indexed keywords

GLUTAMIC ACID; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; TUMOR PROTEIN;

EID: 84982695546     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep30767     Document Type: Article
Times cited : (26)

References (29)
  • 1
    • 77951755278 scopus 로고    scopus 로고
    • Pancreatic cancer
    • doi: 10.1056/NEJMra0901557
    • Hidalgo, M. Pancreatic cancer. The New England journal of medicine 362, 1605-1617, doi: 10.1056/NEJMra0901557 (2010).
    • (2010) The New England Journal of Medicine , vol.362 , pp. 1605-1617
    • Hidalgo, M.1
  • 3
    • 1642588228 scopus 로고    scopus 로고
    • Pancreatic cancer
    • doi: 10.1016/S0140-6736(04)15841-8
    • Li, D., Xie, K., Wolff, R. & Abbruzzese, J. L. Pancreatic cancer. Lancet 363, 1049-1057, doi: 10.1016/S0140-6736(04)15841-8 (2004).
    • (2004) Lancet , vol.363 , pp. 1049-1057
    • Li, D.1    Xie, K.2    Wolff, R.3    Abbruzzese, J.L.4
  • 4
    • 33646577163 scopus 로고    scopus 로고
    • Genetics and biology of pancreatic ductal adenocarcinoma
    • doi: 10.1101/gad.1415606
    • Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N. & Depinho, R. A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes & development 20, 1218-1249, doi: 10.1101/gad.1415606 (2006).
    • (2006) Genes & Development , vol.20 , pp. 1218-1249
    • Hezel, A.F.1    Kimmelman, A.C.2    Stanger, B.Z.3    Bardeesy, N.4    Depinho, R.A.5
  • 5
    • 77954793384 scopus 로고    scopus 로고
    • Second line therapy for advanced pancreatic adenocarcinoma: Where are we and where are we going? Highlights from the "2010 ASCO Annual Meeting". Chicago, IL, USA. June 4-8, 2010
    • Brus, C. & Saif, M. W. Second line therapy for advanced pancreatic adenocarcinoma: where are we and where are we going? Highlights from the "2010 ASCO Annual Meeting". Chicago, IL, USA. June 4-8, 2010. JOP: Journal of the pancreas 11, 321-323 (2010).
    • (2010) JOP: Journal of the Pancreas , vol.11 , pp. 321-323
    • Brus, C.1    Saif, M.W.2
  • 6
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • doi: 10.1073/pnas.1003428107
    • Weinberg, F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America 107, 8788-8793, doi: 10.1073/pnas.1003428107 (2010).
    • (2010) Proceedings of the National Academy of Sciences of the United States of America , vol.107 , pp. 8788-8793
    • Weinberg, F.1
  • 7
    • 77949967131 scopus 로고    scopus 로고
    • Targeting metabolic transformation for cancer therapy
    • doi: 10.1038/nrc2817
    • Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature reviews. Cancer 10, 267-277, doi: 10.1038/nrc2817 (2010).
    • (2010) Nature Reviews. Cancer , vol.10 , pp. 267-277
    • Tennant, D.A.1    Duran, R.V.2    Gottlieb, E.3
  • 8
    • 77955281020 scopus 로고    scopus 로고
    • Glutamine addiction: A new therapeutic target in cancer
    • doi: 10.1016/j.tibs.2010.05.003
    • Wise, D. R. & Thompson, C. B. Glutamine addiction: a new therapeutic target in cancer. Trends in biochemical sciences 35, 427-433, doi: 10.1016/j.tibs.2010.05.003 (2010).
    • (2010) Trends in Biochemical Sciences , vol.35 , pp. 427-433
    • Wise, D.R.1    Thompson, C.B.2
  • 9
    • 61849135453 scopus 로고    scopus 로고
    • Tumor suppressors and cell metabolism: A recipe for cancer growth
    • doi: 10.1101/gad.1756509
    • Jones, R. G. & Thompson, C. B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & development 23, 537-548, doi: 10.1101/gad.1756509 (2009).
    • (2009) Genes & Development , vol.23 , pp. 537-548
    • Jones, R.G.1    Thompson, C.B.2
  • 10
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • doi: 10.1073/pnas.0709747104
    • DeBerardinis, R. J., et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America 104, 19345-19350, doi: 10.1073/pnas.0709747104 (2007).
    • (2007) Proceedings of the National Academy of Sciences of the United States of America , vol.104 , pp. 19345-19350
    • DeBerardinis, R.J.1
  • 11
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
    • doi: 10.1038/nature12040
    • Son, J., et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105, doi: 10.1038/nature12040 (2013).
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1
  • 12
    • 41749114288 scopus 로고    scopus 로고
    • Autophagy: Basic principles and relevance to disease
    • doi: 10.1146/annurev.pathmechdis.2.010506.091842
    • Kundu, M. & Thompson, C. B. Autophagy: basic principles and relevance to disease. Annual review of pathology 3, 427-455, doi: 10.1146/annurev.pathmechdis.2.010506.091842 (2008).
    • (2008) Annual Review of Pathology , vol.3 , pp. 427-455
    • Kundu, M.1    Thompson, C.B.2
  • 13
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • doi: 10.1016/j.cell.2007.12.018
    • Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27-42, doi: 10.1016/j.cell.2007.12.018 (2008).
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 14
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • doi: 10.1038/nature06639
    • Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075, doi: 10.1038/nature06639 (2008).
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 15
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • doi: 10.1101/gad.2016111
    • Yang, S., et al. Pancreatic cancers require autophagy for tumor growth. Genes & development 25, 717-729, doi: 10.1101/gad.2016111 (2011).
    • (2011) Genes & Development , vol.25 , pp. 717-729
    • Yang, S.1
  • 16
    • 77952562382 scopus 로고    scopus 로고
    • Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
    • doi: 10.1016/j.molcel.2010.05.007
    • Choo, A. Y., et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Molecular cell 38, 487-499, doi: 10.1016/j.molcel.2010.05.007 (2010).
    • (2010) Molecular Cell , vol.38 , pp. 487-499
    • Choo, A.Y.1
  • 17
    • 34548789512 scopus 로고    scopus 로고
    • Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES)
    • doi: 10.1042/BJ20070039
    • Robinson, M. M., et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). The Biochemical journal 406, 407-414, doi: 10.1042/BJ20070039 (2007).
    • (2007) The Biochemical Journal , vol.406 , pp. 407-414
    • Robinson, M.M.1
  • 18
    • 84876359638 scopus 로고    scopus 로고
    • SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
    • doi: 10.1016/j.ccr.2013.02.024
    • Jeong, S. M., et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer cell 23, 450-463, doi: 10.1016/j.ccr.2013.02.024 (2013).
    • (2013) Cancer Cell , vol.23 , pp. 450-463
    • Jeong, S.M.1
  • 19
    • 77956497712 scopus 로고    scopus 로고
    • Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
    • doi: 10.1016/j.ccr.2010.08.009
    • Wang, J. B., et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer cell 18, 207-219, doi: 10.1016/j.ccr.2010.08.009 (2010).
    • (2010) Cancer Cell , vol.18 , pp. 207-219
    • Wang, J.B.1
  • 20
    • 84864931233 scopus 로고    scopus 로고
    • Glutaminolysis activates Rag-mTORC1 signaling
    • doi: 10.1016/j.molcel.2012.05.043
    • Duran, R. V., et al. Glutaminolysis activates Rag-mTORC1 signaling. Molecular cell 47, 349-358, doi: 10.1016/j.molcel.2012.05.043 (2012).
    • (2012) Molecular Cell , vol.47 , pp. 349-358
    • Duran, R.V.1
  • 21
    • 84940902661 scopus 로고    scopus 로고
    • Choose delicately and reuse adequately: The newly revealed process of autophagy
    • doi: 10.1248/bpb.b15-00096
    • Kobayashi, S. Choose Delicately and Reuse Adequately: The Newly Revealed Process of Autophagy. Biological & pharmaceutical bulletin 38, 1098-1103, doi: 10.1248/bpb.b15-00096 (2015).
    • (2015) Biological & Pharmaceutical Bulletin , vol.38 , pp. 1098-1103
    • Kobayashi, S.1
  • 22
    • 84880906805 scopus 로고    scopus 로고
    • Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy
    • doi: 10.4161/auto.24083
    • Lorin, S., et al. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9, 850-860, doi: 10.4161/auto.24083 (2013).
    • (2013) Autophagy , vol.9 , pp. 850-860
    • Lorin, S.1
  • 23
    • 65049089113 scopus 로고    scopus 로고
    • Regulation of glutathione synthesis
    • doi: 10.1016/j.mam.2008.05.005
    • Lu, S. C. Regulation of glutathione synthesis. Molecular aspects of medicine 30, 42-59, doi: 10.1016/j.mam.2008.05.005 (2009).
    • (2009) Molecular Aspects of Medicine , vol.30 , pp. 42-59
    • Lu, S.C.1
  • 24
  • 25
    • 59049087460 scopus 로고    scopus 로고
    • Bidirectional transport of amino acids regulates mTOR and autophagy
    • doi: 10.1016/j.cell.2008.11.044
    • Nicklin, P., et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534, doi: 10.1016/j. cell.2008.11.044 (2009).
    • (2009) Cell , vol.136 , pp. 521-534
    • Nicklin, P.1
  • 26
    • 84896713080 scopus 로고    scopus 로고
    • Regulation of autophagy by cytosolic acetyl-coenzyme A
    • doi: 10.1016/j.molcel.2014.01.016
    • Marino, G., et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Molecular cell 53, 710-725, doi: 10.1016/j. molcel.2014.01.016 (2014).
    • (2014) Molecular Cell , vol.53 , pp. 710-725
    • Marino, G.1
  • 27
    • 84902343371 scopus 로고    scopus 로고
    • Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
    • doi: 10.1016/j.celrep.2014.04.037
    • Mullen, A. R., et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell reports 7, 1679-1690, doi: 10.1016/j.celrep.2014.04.037 (2014).
    • (2014) Cell Reports , vol.7 , pp. 1679-1690
    • Mullen, A.R.1
  • 28
    • 84887437596 scopus 로고    scopus 로고
    • Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment
    • doi: 10.1038/cddis.2013.350
    • Sui, X., et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell death & disease 4, e838, doi: 10.1038/cddis.2013.350 (2013).
    • (2013) Cell Death & Disease , vol.4 , pp. e838
    • Sui, X.1
  • 29
    • 80052242132 scopus 로고    scopus 로고
    • Targeting cancer metabolism: A therapeutic window opens. Nature reviews
    • doi: 10.1038/nrd3504
    • Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nature reviews. Drug discovery 10, 671-684, doi: 10.1038/nrd3504 (2011).
    • (2011) Drug Discovery , vol.10 , pp. 671-684
    • Vander Heiden, M.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.