-
1
-
-
77951755278
-
Pancreatic cancer
-
doi: 10.1056/NEJMra0901557
-
Hidalgo, M. Pancreatic cancer. The New England journal of medicine 362, 1605-1617, doi: 10.1056/NEJMra0901557 (2010).
-
(2010)
The New England Journal of Medicine
, vol.362
, pp. 1605-1617
-
-
Hidalgo, M.1
-
2
-
-
77955635233
-
Cancer statistics, 2010
-
doi: 10.3322/caac.20073
-
Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA: a cancer journal for clinicians 60, 277-300, doi: 10.3322/caac.20073 (2010).
-
(2010)
CA: A Cancer Journal for Clinicians
, vol.60
, pp. 277-300
-
-
Jemal, A.1
Siegel, R.2
Xu, J.3
Ward, E.4
-
3
-
-
1642588228
-
Pancreatic cancer
-
doi: 10.1016/S0140-6736(04)15841-8
-
Li, D., Xie, K., Wolff, R. & Abbruzzese, J. L. Pancreatic cancer. Lancet 363, 1049-1057, doi: 10.1016/S0140-6736(04)15841-8 (2004).
-
(2004)
Lancet
, vol.363
, pp. 1049-1057
-
-
Li, D.1
Xie, K.2
Wolff, R.3
Abbruzzese, J.L.4
-
4
-
-
33646577163
-
Genetics and biology of pancreatic ductal adenocarcinoma
-
doi: 10.1101/gad.1415606
-
Hezel, A. F., Kimmelman, A. C., Stanger, B. Z., Bardeesy, N. & Depinho, R. A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes & development 20, 1218-1249, doi: 10.1101/gad.1415606 (2006).
-
(2006)
Genes & Development
, vol.20
, pp. 1218-1249
-
-
Hezel, A.F.1
Kimmelman, A.C.2
Stanger, B.Z.3
Bardeesy, N.4
Depinho, R.A.5
-
5
-
-
77954793384
-
Second line therapy for advanced pancreatic adenocarcinoma: Where are we and where are we going? Highlights from the "2010 ASCO Annual Meeting". Chicago, IL, USA. June 4-8, 2010
-
Brus, C. & Saif, M. W. Second line therapy for advanced pancreatic adenocarcinoma: where are we and where are we going? Highlights from the "2010 ASCO Annual Meeting". Chicago, IL, USA. June 4-8, 2010. JOP: Journal of the pancreas 11, 321-323 (2010).
-
(2010)
JOP: Journal of the Pancreas
, vol.11
, pp. 321-323
-
-
Brus, C.1
Saif, M.W.2
-
6
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
doi: 10.1073/pnas.1003428107
-
Weinberg, F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America 107, 8788-8793, doi: 10.1073/pnas.1003428107 (2010).
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
-
7
-
-
77949967131
-
Targeting metabolic transformation for cancer therapy
-
doi: 10.1038/nrc2817
-
Tennant, D. A., Duran, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature reviews. Cancer 10, 267-277, doi: 10.1038/nrc2817 (2010).
-
(2010)
Nature Reviews. Cancer
, vol.10
, pp. 267-277
-
-
Tennant, D.A.1
Duran, R.V.2
Gottlieb, E.3
-
8
-
-
77955281020
-
Glutamine addiction: A new therapeutic target in cancer
-
doi: 10.1016/j.tibs.2010.05.003
-
Wise, D. R. & Thompson, C. B. Glutamine addiction: a new therapeutic target in cancer. Trends in biochemical sciences 35, 427-433, doi: 10.1016/j.tibs.2010.05.003 (2010).
-
(2010)
Trends in Biochemical Sciences
, vol.35
, pp. 427-433
-
-
Wise, D.R.1
Thompson, C.B.2
-
9
-
-
61849135453
-
Tumor suppressors and cell metabolism: A recipe for cancer growth
-
doi: 10.1101/gad.1756509
-
Jones, R. G. & Thompson, C. B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & development 23, 537-548, doi: 10.1101/gad.1756509 (2009).
-
(2009)
Genes & Development
, vol.23
, pp. 537-548
-
-
Jones, R.G.1
Thompson, C.B.2
-
10
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
doi: 10.1073/pnas.0709747104
-
DeBerardinis, R. J., et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America 104, 19345-19350, doi: 10.1073/pnas.0709747104 (2007).
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
-
11
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
doi: 10.1038/nature12040
-
Son, J., et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105, doi: 10.1038/nature12040 (2013).
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
-
12
-
-
41749114288
-
Autophagy: Basic principles and relevance to disease
-
doi: 10.1146/annurev.pathmechdis.2.010506.091842
-
Kundu, M. & Thompson, C. B. Autophagy: basic principles and relevance to disease. Annual review of pathology 3, 427-455, doi: 10.1146/annurev.pathmechdis.2.010506.091842 (2008).
-
(2008)
Annual Review of Pathology
, vol.3
, pp. 427-455
-
-
Kundu, M.1
Thompson, C.B.2
-
13
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
doi: 10.1016/j.cell.2007.12.018
-
Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27-42, doi: 10.1016/j.cell.2007.12.018 (2008).
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
14
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
doi: 10.1038/nature06639
-
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075, doi: 10.1038/nature06639 (2008).
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
15
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
doi: 10.1101/gad.2016111
-
Yang, S., et al. Pancreatic cancers require autophagy for tumor growth. Genes & development 25, 717-729, doi: 10.1101/gad.2016111 (2011).
-
(2011)
Genes & Development
, vol.25
, pp. 717-729
-
-
Yang, S.1
-
16
-
-
77952562382
-
Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
-
doi: 10.1016/j.molcel.2010.05.007
-
Choo, A. Y., et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Molecular cell 38, 487-499, doi: 10.1016/j.molcel.2010.05.007 (2010).
-
(2010)
Molecular Cell
, vol.38
, pp. 487-499
-
-
Choo, A.Y.1
-
17
-
-
34548789512
-
Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES)
-
doi: 10.1042/BJ20070039
-
Robinson, M. M., et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). The Biochemical journal 406, 407-414, doi: 10.1042/BJ20070039 (2007).
-
(2007)
The Biochemical Journal
, vol.406
, pp. 407-414
-
-
Robinson, M.M.1
-
18
-
-
84876359638
-
SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
-
doi: 10.1016/j.ccr.2013.02.024
-
Jeong, S. M., et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer cell 23, 450-463, doi: 10.1016/j.ccr.2013.02.024 (2013).
-
(2013)
Cancer Cell
, vol.23
, pp. 450-463
-
-
Jeong, S.M.1
-
19
-
-
77956497712
-
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
-
doi: 10.1016/j.ccr.2010.08.009
-
Wang, J. B., et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer cell 18, 207-219, doi: 10.1016/j.ccr.2010.08.009 (2010).
-
(2010)
Cancer Cell
, vol.18
, pp. 207-219
-
-
Wang, J.B.1
-
20
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
doi: 10.1016/j.molcel.2012.05.043
-
Duran, R. V., et al. Glutaminolysis activates Rag-mTORC1 signaling. Molecular cell 47, 349-358, doi: 10.1016/j.molcel.2012.05.043 (2012).
-
(2012)
Molecular Cell
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
-
21
-
-
84940902661
-
Choose delicately and reuse adequately: The newly revealed process of autophagy
-
doi: 10.1248/bpb.b15-00096
-
Kobayashi, S. Choose Delicately and Reuse Adequately: The Newly Revealed Process of Autophagy. Biological & pharmaceutical bulletin 38, 1098-1103, doi: 10.1248/bpb.b15-00096 (2015).
-
(2015)
Biological & Pharmaceutical Bulletin
, vol.38
, pp. 1098-1103
-
-
Kobayashi, S.1
-
22
-
-
84880906805
-
Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy
-
doi: 10.4161/auto.24083
-
Lorin, S., et al. Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9, 850-860, doi: 10.4161/auto.24083 (2013).
-
(2013)
Autophagy
, vol.9
, pp. 850-860
-
-
Lorin, S.1
-
23
-
-
65049089113
-
Regulation of glutathione synthesis
-
doi: 10.1016/j.mam.2008.05.005
-
Lu, S. C. Regulation of glutathione synthesis. Molecular aspects of medicine 30, 42-59, doi: 10.1016/j.mam.2008.05.005 (2009).
-
(2009)
Molecular Aspects of Medicine
, vol.30
, pp. 42-59
-
-
Lu, S.C.1
-
25
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
doi: 10.1016/j.cell.2008.11.044
-
Nicklin, P., et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521-534, doi: 10.1016/j. cell.2008.11.044 (2009).
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
-
26
-
-
84896713080
-
Regulation of autophagy by cytosolic acetyl-coenzyme A
-
doi: 10.1016/j.molcel.2014.01.016
-
Marino, G., et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Molecular cell 53, 710-725, doi: 10.1016/j. molcel.2014.01.016 (2014).
-
(2014)
Molecular Cell
, vol.53
, pp. 710-725
-
-
Marino, G.1
-
27
-
-
84902343371
-
Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects
-
doi: 10.1016/j.celrep.2014.04.037
-
Mullen, A. R., et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell reports 7, 1679-1690, doi: 10.1016/j.celrep.2014.04.037 (2014).
-
(2014)
Cell Reports
, vol.7
, pp. 1679-1690
-
-
Mullen, A.R.1
-
28
-
-
84887437596
-
Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment
-
doi: 10.1038/cddis.2013.350
-
Sui, X., et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell death & disease 4, e838, doi: 10.1038/cddis.2013.350 (2013).
-
(2013)
Cell Death & Disease
, vol.4
, pp. e838
-
-
Sui, X.1
-
29
-
-
80052242132
-
Targeting cancer metabolism: A therapeutic window opens. Nature reviews
-
doi: 10.1038/nrd3504
-
Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nature reviews. Drug discovery 10, 671-684, doi: 10.1038/nrd3504 (2011).
-
(2011)
Drug Discovery
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
|