-
1
-
-
84937976706
-
A mutual association based nonlinear ensemble mechanism for time series forecasting
-
R., Adhikari, A mutual association based nonlinear ensemble mechanism for time series forecasting, Appl. Intell. 43 (2015), pp. 233–250. doi:10.1007/s10489-014-0641-y
-
(2015)
Appl. Intell.
, vol.43
, pp. 233-250
-
-
Adhikari, R.1
-
2
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R., Battiti, Using mutual information for selecting features in supervised neural net learning, IEEE Transact Neural Netw. 5 (1994), pp. 537–550. doi:10.1109/72.298224
-
(1994)
IEEE Transact Neural Netw.
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
3
-
-
84939948968
-
An information-theoretic framework for improving imperfect dynamical predictions via multi-model ensemble forecasts
-
M., Branicki and A.J., Majda, An information-theoretic framework for improving imperfect dynamical predictions via multi-model ensemble forecasts, J. Nonlinear Sci. 25 (2015), pp. 489–538. doi:10.1007/s00332-015-9233-1
-
(2015)
J. Nonlinear Sci.
, vol.25
, pp. 489-538
-
-
Branicki, M.1
Majda, A.J.2
-
4
-
-
0035478854
-
Random forests
-
L., Breiman, Random forests, Mach. Learn. 45 (2001), pp. 5–32. doi:10.1023/A:1010933404324
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
84901935441
-
A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis
-
M.J., Brusco, A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis, Comput. Stat. Data Anal. 77 (2014), pp. 38–53. doi:10.1016/j.csda.2014.03.001
-
(2014)
Comput. Stat. Data Anal.
, vol.77
, pp. 38-53
-
-
Brusco, M.J.1
-
6
-
-
84919630495
-
Feature selection using a neural framework with controlled redundancy
-
R., Chakraborty and N.R., Pal, Feature selection using a neural framework with controlled redundancy, IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), pp. 35–50. doi:10.1109/TNNLS.2014.2308902
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, pp. 35-50
-
-
Chakraborty, R.1
Pal, N.R.2
-
7
-
-
72049084727
-
Modeling wine preferences by data mining from physicochemical properties
-
P., Cortez, A., Cerdeira, F., Almeida, T., Matos and J., Reis, Modeling wine preferences by data mining from physicochemical properties, Decis. Support Syst. 47 (2009), pp. 547–553. doi:10.1016/j.dss.2009.05.016
-
(2009)
Decis. Support Syst.
, vol.47
, pp. 547-553
-
-
Cortez, P.1
Cerdeira, A.2
Almeida, F.3
Matos, T.4
Reis, J.5
-
8
-
-
84889281816
-
-
1st ed., Wiley, New York:
-
T.M., Cover and J.A., Thomas, Elements of Information Theory, 1st ed., Wiley, New York, 1991.
-
(1991)
Elements of Information Theory
-
-
Cover, T.M.1
Thomas, J.A.2
-
9
-
-
84960463485
-
Minimum redundancy feature selection from microarray gene expression data
-
C., Ding and H.C., Peng, Minimum redundancy feature selection from microarray gene expression data, Proc. Second IEEE Comput. Syst. Bioinf. Conf. (2003), pp. 523–528.
-
(2003)
Proc. Second IEEE Comput. Syst. Bioinf. Conf.
, pp. 523-528
-
-
Ding, C.1
Peng, H.C.2
-
10
-
-
3242708140
-
Least angle regression
-
B., Efron, T., Hastie, I., Hohnstone and R., Tibshirani, Least angle regression, Ann. Stat. 32 (2004), pp. 407–499. doi:10.1214/009053604000000067
-
(2004)
Ann. Stat.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Hohnstone, I.3
Tibshirani, R.4
-
11
-
-
60849097547
-
Normalized mutual information feature selection
-
P.A., Estevez, M., Tesmer, C.A., Perez and J.M., Zurada, Normalized mutual information feature selection, IEEE Trans. Neural Netw. 20 (2009), pp. 189–201. doi:10.1109/TNN.2008.2005601
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, pp. 189-201
-
-
Estevez, P.A.1
Tesmer, M.2
Perez, C.A.3
Zurada, J.M.4
-
12
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
J., Fan and R., Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc. 96 (2001), pp. 1348–1360. doi:10.1198/016214501753382273
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
13
-
-
84902449177
-
Strong oracle optimality of folded concave penalized estimation
-
J., Fan, L., Xue and H., Zou, Strong oracle optimality of folded concave penalized estimation, Ann. Stat. 42 (2014), pp. 819–849. doi:10.1214/13-AOS1198
-
(2014)
Ann. Stat.
, vol.42
, pp. 819-849
-
-
Fan, J.1
Xue, L.2
Zou, H.3
-
15
-
-
33745561205
-
An introduction to variable and feature selection
-
I., Guyon and A., Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003), pp. 1157–1182.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
16
-
-
27844472191
-
An empirical comparison of ensemble methods based on classification trees
-
M., Hamza and D., Larocque, An empirical comparison of ensemble methods based on classification trees, J. Statist. Comput. Simul. 75 (2005), pp. 629–643. doi:10.1080/00949650410001729472
-
(2005)
J. Statist. Comput. Simul.
, vol.75
, pp. 629-643
-
-
Hamza, M.1
Larocque, D.2
-
17
-
-
0017947982
-
Hedonic prices and the demand for clean air
-
D., Harrison and D.L., Rubinfeld, Hedonic prices and the demand for clean air, J. Environ. Econ. Manage. 5 (1978), pp. 81–102. doi:10.1016/0095-0696(78)90006-2
-
(1978)
J. Environ. Econ. Manage.
, vol.5
, pp. 81-102
-
-
Harrison, D.1
Rubinfeld, D.L.2
-
18
-
-
0003684449
-
-
2nd ed., Springer, Berlin:
-
T., Hastie, R., Tibshirani and J., Friedman, The Elements of Statistical Learning:Data Mining, Inference, and Prediction, 2nd ed., Springer, Berlin, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
19
-
-
0033640646
-
Statistical pattern recognition: a review
-
A.K., Jain, R.P.W., Duin and J., Mao, Statistical pattern recognition:a review, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), pp. 4–37. doi:10.1109/34.824819
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, pp. 4-37
-
-
Jain, A.K.1
Duin, R.P.W.2
Mao, J.3
-
20
-
-
16544376973
-
Agglomerative hierarchical clustering of continuous variables based on mutual information
-
I., Kojadinovic, Agglomerative hierarchical clustering of continuous variables based on mutual information, Comput. Stat. Data Anal. 46 (2004), pp. 269–294. doi:10.1016/S0167-9473(03)00153-1
-
(2004)
Comput. Stat. Data Anal.
, vol.46
, pp. 269-294
-
-
Kojadinovic, I.1
-
21
-
-
85020565290
-
-
Neural network ensembles, cross validation, and active learning, in Advances in Neural Information Processing Systems, Vol. 7, G. Tesauro, D.S. Touretzky and T.K. Leen, eds., MIT Press, Cambridge, 1995, pp. 231–238
-
A., Krogh and J., Vedelsby, Neural network ensembles, cross validation, and active learning, in Advances in Neural Information Processing Systems, Vol. 7, G. Tesauro, D.S. Touretzky and T.K. Leen, eds., MIT Press, Cambridge, 1995, pp. 231–238.
-
-
-
Krogh, A.1
Vedelsby, J.2
-
22
-
-
0036127473
-
Input feature selection for classification problems
-
N., Kwak and C.H., Choi, Input feature selection for classification problems, IEEE Trans. Neural Netw. 13 (2002), pp. 143–159. doi:10.1109/72.977291
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, pp. 143-159
-
-
Kwak, N.1
Choi, C.H.2
-
23
-
-
34548286564
-
Relaxed lasso
-
N., Meinshausen, Relaxed lasso, Comput. Stat. Data Anal. 52 (2007), pp. 374–393. doi:10.1016/j.csda.2006.12.019
-
(2007)
Comput. Stat. Data Anal.
, vol.52
, pp. 374-393
-
-
Meinshausen, N.1
-
24
-
-
77958487535
-
Stability selection (with discussion)
-
N., Meinshausen and P., Bühlmann, Stability selection (with discussion), J. Royal Statist. Soc:Ser. B 72 (2010), pp. 417–473. doi:10.1111/j.1467-9868.2010.00740.x
-
(2010)
J. Royal Statist. Soc: Ser. B
, vol.72
, pp. 417-473
-
-
Meinshausen, N.1
Bühlmann, P.2
-
25
-
-
84871245760
-
Ensemble approaches for regression: A survey
-
Article 10
-
J., Mendes-Moreira, C., Soares, A.M., Jorge and J.F., deSousa, Ensemble approaches for regression:A survey, ACM Comput. Surv. 45 (2012), pp. 10. Article 10. doi:10.1145/2379776.2379786
-
(2012)
ACM Comput. Surv.
, vol.45
, pp. 10
-
-
Mendes-Moreira, J.1
Soares, C.2
Jorge, A.M.3
deSousa, J.F.4
-
27
-
-
84865612777
-
An extended variable inclusion and shrinkage algorithm for correlated variables
-
A., Mkhadri and M., Ouhourane, An extended variable inclusion and shrinkage algorithm for correlated variables, Comput. Stat. Data Anal. 57 (2013), pp. 631–644. doi:10.1016/j.csda.2012.07.023
-
(2013)
Comput. Stat. Data Anal.
, vol.57
, pp. 631-644
-
-
Mkhadri, A.1
Ouhourane, M.2
-
28
-
-
85027938740
-
A group VISA algorithm for variable selection
-
A., Mkhadri and M., Ouhourane, A group VISA algorithm for variable selection, Statist. Methods Appl. 24 (2015), pp. 41–60. doi:10.1007/s10260-014-0281-8
-
(2015)
Statist. Methods Appl.
, vol.24
, pp. 41-60
-
-
Mkhadri, A.1
Ouhourane, M.2
-
29
-
-
1942429034
-
Notes on regression and inheritance in the case of two parents
-
K., Pearson, Notes on regression and inheritance in the case of two parents, Proc. R. Soc. Lond. 58 (1895), pp. 240–242. doi:10.1098/rspl.1895.0041
-
(1895)
Proc. R. Soc. Lond.
, vol.58
, pp. 240-242
-
-
Pearson, K.1
-
30
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance and min-redundancey
-
H., Peng, F., Long and C., Ding, Feature selection based on mutual information:Criteria of max-dependency, max-relevance and min-redundancey, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005), pp. 1226–1238. doi:10.1109/TPAMI.2005.159
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
31
-
-
54949144379
-
variable inclusion and shrinkage algorithms
-
P., Radchenko and G.M., James, variable inclusion and shrinkage algorithms, J. Amer. Statist. Assoc. 103 (2008), pp. 1304–1315. doi:10.1198/016214508000000481
-
(2008)
J. Amer. Statist. Assoc.
, vol.103
, pp. 1304-1315
-
-
Radchenko, P.1
James, G.M.2
-
32
-
-
84871371181
-
Variable selection with error control: another look at stability selection
-
R.D., Shah and R.J., Samworth, Variable selection with error control:another look at stability selection, J. R. Statist. Soc.:Ser. B 75 (2013), pp. 55–80. doi:10.1111/j.1467-9868.2011.01034.x
-
(2013)
J. R. Statist. Soc.: Ser. B
, vol.75
, pp. 55-80
-
-
Shah, R.D.1
Samworth, R.J.2
-
33
-
-
84856043672
-
A mathematical theory of communication
-
623–656
-
C.E., Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), pp. 379–423.623–656. doi:10.1002/j.1538-7305.1948.tb01338.x
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
34
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R., Tibshirani, Regression shrinkage and selection via the lasso, J. R. Statist. Soc.:Ser. B 58 (1996), pp. 267–288.
-
(1996)
J. R. Statist. Soc.: Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
35
-
-
79955040218
-
Regression shrinkage and selection via the lasso: a retrospective
-
R., Tibshirani, Regression shrinkage and selection via the lasso:a retrospective, J. R. Statist. Soc.:Ser. B (Statist. Methodol.) 73 (2011), pp. 273–282. doi:10.1111/j.1467-9868.2011.00771.x
-
(2011)
J. R. Statist. Soc.: Ser. B (Statist. Methodol.)
, vol.73
, pp. 273-282
-
-
Tibshirani, R.1
-
36
-
-
77950210130
-
Accurate telemonitoring of Parkinson's disease progression by non-invasive speech tests
-
A., Tsanas, M.A., Little, P.E., McSharry and L.O., Ramig, Accurate telemonitoring of Parkinson's disease progression by non-invasive speech tests, IEEE Trans. Biomed. Eng. 57 (2010), pp. 884–893. doi:10.1109/TBME.2009.2036000
-
(2010)
IEEE Trans. Biomed. Eng.
, vol.57
, pp. 884-893
-
-
Tsanas, A.1
Little, M.A.2
McSharry, P.E.3
Ramig, L.O.4
-
37
-
-
77956611003
-
mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
-
A., Unler, A., Murat and R.B., Chinnam, mr2PSO:A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification, Inf. Sci. 181 (2011), pp. 4625–4641. doi:10.1016/j.ins.2010.05.037
-
(2011)
Inf. Sci.
, vol.181
, pp. 4625-4641
-
-
Unler, A.1
Murat, A.2
Chinnam, R.B.3
-
38
-
-
78649238560
-
-
An Improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information, in The International Symposium on Applications and the Internet, Y. Okabe, G. Agha and C. Seon Hong, eds., IEEE Computer Society, Seoul, 2010, pp. 395–398
-
L.T., Vinh, N.D., Thang and Y.K., Lee, An Improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information, in The International Symposium on Applications and the Internet, Y. Okabe, G. Agha and C. Seon Hong, eds., IEEE Computer Society, Seoul, 2010, pp. 395–398.
-
-
-
Vinh, L.T.1
Thang, N.D.2
Lee, Y.K.3
-
39
-
-
85020588551
-
-
Variable ranking by solution-path algorithms, M.Math., University of Waterloo (Canada)
-
B., Wang, Variable ranking by solution-path algorithms, M.Math., University of Waterloo (Canada), 2011.
-
(2011)
-
-
Wang, B.1
-
40
-
-
79961243625
-
Random lasso
-
S., Wang, B., Nan, S., Rosset and J., Zhu, Random lasso, Ann. Appl. Stat. 5 (2011), pp. 468–485. doi:10.1214/10-AOAS377
-
(2011)
Ann. Appl. Stat.
, vol.5
, pp. 468-485
-
-
Wang, S.1
Nan, B.2
Rosset, S.3
Zhu, J.4
-
41
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
J., Weston, A., Elisseff, B., Schoelkopf and M., Tipping, Use of the zero norm with linear models and kernel methods, J. Mach. Learn. Res. 3 (2003), pp. 1439–1461.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseff, A.2
Schoelkopf, B.3
Tipping, M.4
-
42
-
-
84862560560
-
Stochastic stepwise ensembles for variable selection
-
L., Xin and M., Zhu, Stochastic stepwise ensembles for variable selection, J. Comput. Graph. Stat. 21 (2012), pp. 275–294. doi:10.1080/10618600.2012.679223
-
(2012)
J. Comput. Graph. Stat.
, vol.21
, pp. 275-294
-
-
Xin, L.1
Zhu, M.2
-
43
-
-
0003076895
-
Feature selection for high-dimensional genomic microarray data
-
E.P., Xing, M.I., Jordan and R.M., Karp, Feature selection for high-dimensional genomic microarray data, Proc. Eighteenth Int. Conf. Mach. Learn. (2001), pp. 601–608.
-
(2001)
Proc. Eighteenth Int. Conf. Mach. Learn.
, pp. 601-608
-
-
Xing, E.P.1
Jordan, M.I.2
Karp, R.M.3
-
44
-
-
84918810308
-
RandGA: Injecting randomness into parallel genetic algorithm for variable selection
-
C.-X., Zhang, G.-W., Wang and J.-M., Liu, RandGA:Injecting randomness into parallel genetic algorithm for variable selection, J. Appl. Stat. 42 (2015), pp. 630–647. doi:10.1080/02664763.2014.980788
-
(2015)
J. Appl. Stat.
, vol.42
, pp. 630-647
-
-
Zhang, C.-X.1
Wang, G.-W.2
Liu, J.-M.3
-
45
-
-
33845241081
-
Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection
-
M., Zhu and H.A., Chipman, Darwinian evolution in parallel universes:A parallel genetic algorithm for variable selection, Technometrics 48 (2006), pp. 491–502. doi:10.1198/004017006000000093
-
(2006)
Technometrics
, vol.48
, pp. 491-502
-
-
Zhu, M.1
Chipman, H.A.2
-
46
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
H., Zou, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc. 101 (2006), pp. 1418–1429. doi:10.1198/016214506000000735
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
47
-
-
16244401458
-
Regulzarization variable selection via the elastic net
-
H., Zou and T., Hastie, Regulzarization variable selection via the elastic net, J. R. Statist. Soc.:Ser. B 67 (2005), pp. 301–320. doi:10.1111/j.1467-9868.2005.00503.x
-
(2005)
J. R. Statist. Soc.: Ser. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
48
-
-
51049104549
-
One-step sparse estimates in nonconcave penalized likelihood models
-
H., Zou and R.Z., Li, One-step sparse estimates in nonconcave penalized likelihood models, Ann. Stat. 36 (2008), pp. 1509–1533. doi:10.1214/009053607000000802
-
(2008)
Ann. Stat.
, vol.36
, pp. 1509-1533
-
-
Zou, H.1
Li, R.Z.2
|