-
1
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
L. Breiman, Better subset regression using the nonnegative garrote, Technometrics 37(4) (1995), pp. 373–384. doi: 10.1080/00401706.1995.10484371
-
(1995)
Technometrics
, vol.37
, Issue.4
, pp. 373-384
-
-
Breiman, L.1
-
2
-
-
0030344230
-
Heuristics of instability and stabilization in model selection
-
L. Breiman, Heuristics of instability and stabilization in model selection, Ann. Stat. 24(6) (1996), pp. 2350–2383. doi: 10.1214/aos/1032181158
-
(1996)
Ann. Stat
, vol.24
, Issue.6
, pp. 2350-2383
-
-
Breiman, L.1
-
3
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996), pp. 123–140.
-
(1996)
Mach. Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
L. Breiman, Random forests, Mach. Learn. 45(1) (2001), pp. 5–32. doi: 10.1023/A:1010933404324
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
10444221886
-
Diversity creation methods: A survey and categorization
-
G. Brown, J. Wyatt, R. Harris, and X. Yao, Diversity creation methods: A survey and categorization, Inf. Fusion 6(1) (2005), pp. 5–20. doi: 10.1016/j.inffus.2004.04.004
-
(2005)
Inf. Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
6
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting
-
P. Bühlmann and T. Hothorn, Boosting algorithms: Regularization, prediction and model fitting, Statist. Sci. 22(4) (2007), pp. 477–505. doi: 10.1214/07-STS242
-
(2007)
Statist. Sci
, vol.22
, Issue.4
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
7
-
-
0030263980
-
Genetic algorithms and their statistical applications: An introduction
-
S. Chatterjee, M. Lauadto, and L.A. Lynch, Genetic algorithms and their statistical applications: An introduction, Comput. Stat. Data Anal. 22 (1996), pp. 633–651. doi: 10.1016/0167-9473(96)00011-4
-
(1996)
Comput. Stat. Data Anal
, vol.22
, pp. 633-651
-
-
Chatterjee, S.1
Lauadto, M.2
Lynch, L.A.3
-
8
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Hohnstone, and R. Tibshirani, Least angle regression, Ann. Stat. 32(2) (2004), pp. 407–499. doi: 10.1214/009053604000000067
-
(2004)
Ann. Stat
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Hohnstone, I.3
Tibshirani, R.4
-
9
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
J.Q. Fan and R.Z. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Statist. Assoc. 96(456) (2001), pp. 1348–1360. doi: 10.1198/016214501753382273
-
(2001)
J. Am. Statist. Assoc
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.Q.1
Li, R.Z.2
-
10
-
-
84918779466
-
-
Experiments with a new boosting algorithm, Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, 1996, pp. 148–156
-
Y. Freund and R. Schapire, Experiments with a new boosting algorithm, Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, 1996, pp. 148–156.
-
-
-
Freund, Y.1
Schapire, R.2
-
11
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J.H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Stat. 29(5) (2001), pp. 1189–1232. doi: 10.1214/aos/1013203451
-
(2001)
Ann. Stat
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
12
-
-
0032361278
-
Penalized regression: The bridge versus the lasso
-
W.J. Fu, Penalized regression: The bridge versus the lasso, J. Comput. Graph. Stat. 7(3) (1998), pp. 397–346.
-
(1998)
J. Comput. Graph. Stat
, vol.7
, Issue.3
, pp. 346-397
-
-
Fu, W.J.1
-
13
-
-
84873737900
-
Margin-based ordered aggregation for ensemble learning
-
L. Guo and S. Boukir, Margin-based ordered aggregation for ensemble learning, Pattern Recognit. Lett. 34(6) (2013), pp. 603–609. doi: 10.1016/j.patrec.2013.01.003
-
(2013)
Pattern Recognit. Lett
, vol.34
, Issue.6
, pp. 603-609
-
-
Guo, L.1
Boukir, S.2
-
14
-
-
27844472191
-
An empirical comparison of ensemble methods based on classification trees
-
M. Hamza and D. Larocque, An empirical comparison of ensemble methods based on classification trees, J. Statist. Comput. Simul. 75(8) (2005), pp. 629–643. doi: 10.1080/00949650410001729472
-
(2005)
J. Statist. Comput. Simul
, vol.75
, Issue.8
, pp. 629-643
-
-
Hamza, M.1
Larocque, D.2
-
15
-
-
0003684449
-
-
2nd ed., Springer:
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
16
-
-
84918800844
-
-
Neural network ensembles, cross validation, and active learning, in Advances in Neural Information Processing Systems, Vol. 7, G. Tesauro, D.S. Touretzky, T.K. Leen, eds., MIT Press, Cambridge, pp. 231–238
-
A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active learning, in Advances in Neural Information Processing Systems, Vol. 7, G. Tesauro, D.S. Touretzky, T.K. Leen, eds., MIT Press, Cambridge, pp. 231–238.
-
-
-
Krogh, A.1
Vedelsby, J.2
-
17
-
-
84918817830
-
-
Some recent developments in parametric and nonparametric regression models, Ph.D. diss., Raleigh, North Carolina State University, 2012
-
C.Y. Lin, Some recent developments in parametric and nonparametric regression models, Ph.D. diss., Raleigh, North Carolina State University, 2012.
-
-
-
Lin, C.Y.1
-
18
-
-
79551523991
-
Greedy optimization classifiers ensemble based on diversity
-
S.S. Mao, L.C. Jiao, L. Xiong, and S.P. Gou, Greedy optimization classifiers ensemble based on diversity, Pattern Recognit. 44(6) (2011), pp. 1245–1261. doi: 10.1016/j.patcog.2010.11.007
-
(2011)
Pattern Recognit
, vol.44
, Issue.6
, pp. 1245-1261
-
-
Mao, S.S.1
Jiao, L.C.2
Xiong, L.3
Gou, S.P.4
-
19
-
-
84918779926
-
-
Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, Morgan, Kafmann, San Francisco, CA, 1997, pp. 211–218
-
D. Margineantu and T. Dietterich, Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, Morgan, Kafmann, San Francisco, CA, 1997, pp. 211–218.
-
-
-
Margineantu, D.1
Dietterich, T.2
-
20
-
-
60349092310
-
An analysis of ensemble pruning techniques based on ordered aggregation
-
G. Martínez-Muñoz, D. Hernández-Lobato, and A. Suárez, An analysis of ensemble pruning techniques based on ordered aggregation, IEEE Trans. Pattern Anal. Mach. Intell. 31(2) (2009), pp. 245–259. doi: 10.1109/TPAMI.2008.78
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.31
, Issue.2
, pp. 245-259
-
-
Martínez-Muñoz, G.1
Hernández-Lobato, D.2
Suárez, A.3
-
21
-
-
34548286564
-
Relaxed lasso
-
N. Meinshausen, Relaxed lasso, Comput. Stat. Data Anal. 52(1) (2007), pp. 374–393. doi: 10.1016/j.csda.2006.12.019
-
(2007)
Comput. Stat. Data Anal
, vol.52
, Issue.1
, pp. 374-393
-
-
Meinshausen, N.1
-
22
-
-
77958487535
-
Stability selection (with discussion)
-
N. Meinshausen and P. Bühlmann, Stability selection (with discussion), J. R. Statist. Soc. (Ser. B) 72(4) (2010), pp. 417–473. doi: 10.1111/j.1467-9868.2010.00740.x
-
(2010)
J. R. Statist. Soc. (Ser. B)
, vol.72
, Issue.4
, pp. 417-473
-
-
Meinshausen, N.1
Bühlmann, P.2
-
23
-
-
84878972963
-
An ensemble method for concept drift in nonstationary environment
-
D. Mejri, R. Khanchel, and M. Limam, An ensemble method for concept drift in nonstationary environment, J. Stat. Comput. Simul. 83(6) (2013), pp. 1115–1128. doi: 10.1080/00949655.2011.651797
-
(2013)
J. Stat. Comput. Simul
, vol.83
, Issue.6
, pp. 1115-1128
-
-
Mejri, D.1
Khanchel, R.2
Limam, M.3
-
24
-
-
84871245760
-
Ensemble approaches for regression: A survey
-
Article 10
-
J. Mendes-Moreira, C. Soares, A.M. Jorge, and J.F. de Sousa, Ensemble approaches for regression: A survey, ACM Comput. Surv. 45(1) (2012), p. 10. Article 10. doi: 10.1145/2379776.2379786
-
(2012)
ACM Comput. Surv
, vol.45
, Issue.1
, pp. 10
-
-
Mendes-Moreira, J.1
Soares, C.2
Jorge, A.M.3
de Sousa, J.F.4
-
26
-
-
84865612777
-
An extended variable inclusion and shrinkage algorithm for correlated variables
-
A. Mkhadri and M. Ouhourane, An extended variable inclusion and shrinkage algorithm for correlated variables, Comput. Stat. Data Anal. 57(1) (2013), pp. 631–644. doi: 10.1016/j.csda.2012.07.023
-
(2013)
Comput. Stat. Data Anal
, vol.57
, Issue.1
, pp. 631-644
-
-
Mkhadri, A.1
Ouhourane, M.2
-
27
-
-
84857037836
-
Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data
-
C.O. Plumpton, L.I. Kuncheva, N.N. Oosterhof, and S.J. Jognston, Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data, Pattern Recognit. 45(5) (2012), pp. 2101–2108. doi: 10.1016/j.patcog.2011.04.023
-
(2012)
Pattern Recognit
, vol.45
, Issue.5
, pp. 2101-2108
-
-
Plumpton, C.O.1
Kuncheva, L.I.2
Oosterhof, N.N.3
Jognston, S.J.4
-
28
-
-
54949144379
-
variable inclusion and shrinkage algorithms
-
P. Radchenko and G.M. James, variable inclusion and shrinkage algorithms, J. Amer. Statist. Assoc. 103(483) (2008), pp. 1304–1315. doi: 10.1198/016214508000000481
-
(2008)
J. Amer. Statist. Assoc
, vol.103
, Issue.483
, pp. 1304-1315
-
-
Radchenko, P.1
James, G.M.2
-
29
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
J.J. Rodríguez, L.I. Kuncheva, and C.J. Alonso, Rotation forest: A new classifier ensemble method, IEEE Trans. Pattern Anal. Mach. Intell. 28(10) (2006), pp. 1619–1631. doi: 10.1109/TPAMI.2006.211
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.28
, Issue.10
, pp. 1619-1631
-
-
Rodríguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
30
-
-
69449097857
-
Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
-
L. Rokach, Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography, Comput. Stat. Data Anal. 53(12) (2009), pp. 4046–4072. doi: 10.1016/j.csda.2009.07.017
-
(2009)
Comput. Stat. Data Anal
, vol.53
, Issue.12
, pp. 4046-4072
-
-
Rokach, L.1
-
31
-
-
84871371181
-
Variable selection with error control: another look at stability selection
-
R.D. Shah and R.J. Samworth, Variable selection with error control: another look at stability selection, J. R. Statist. Soc. (Ser. B) 75(1) (2013), pp. 55–80. doi: 10.1111/j.1467-9868.2011.01034.x
-
(2013)
J. R. Statist. Soc. (Ser. B)
, vol.75
, Issue.1
, pp. 55-80
-
-
Shah, R.D.1
Samworth, R.J.2
-
32
-
-
78751611452
-
To explain or to predict?
-
G. Shmueli, To explain or to predict? Statist. Sci. 25(3) (2010), pp. 289–310. doi: 10.1214/10-STS330
-
(2010)
Statist. Sci
, vol.25
, Issue.3
, pp. 289-310
-
-
Shmueli, G.1
-
33
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. (Ser. B) 58(1) (1996), pp. 267–288.
-
(1996)
J. R. Statist. Soc. (Ser. B)
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
34
-
-
79961243625
-
Random lasso
-
S.J. Wang, B. Nan, S. Rosset, and J. Zhu, Random lasso, Ann. Stat. 5(1) (2011), pp. 468–485. doi: 10.1214/10-AOAS377
-
(2011)
Ann. Stat
, vol.5
, Issue.1
, pp. 468-485
-
-
Wang, S.J.1
Nan, B.2
Rosset, S.3
Zhu, J.4
-
35
-
-
84862560560
-
Stochastic stepwise ensembles for variable selection
-
L. Xin and M. Zhu, Stochastic stepwise ensembles for variable selection, J. Comput. Graph. Stat. 21(2) (2012), pp. 275–294. doi: 10.1080/10618600.2012.679223
-
(2012)
J. Comput. Graph. Stat
, vol.21
, Issue.2
, pp. 275-294
-
-
Xin, L.1
Zhu, M.2
-
36
-
-
84859177457
-
An empirical bias-variance analysis of DECORATE ensemble method at different training sample sizes
-
C.X. Zhang, G.W. Wang, and J.S. Zhang, An empirical bias-variance analysis of DECORATE ensemble method at different training sample sizes, J. Appl. Stat. 39(4) (2012), pp. 829–850. doi: 10.1080/02664763.2011.620949
-
(2012)
J. Appl. Stat
, vol.39
, Issue.4
, pp. 829-850
-
-
Zhang, C.X.1
Wang, G.W.2
Zhang, J.S.3
-
37
-
-
35748956765
-
A local boosting algorithm for solving classification problems
-
C.X. Zhang and J.S. Zhang, A local boosting algorithm for solving classification problems, Comput. Stat. Data Anal. 52(4) (2008), pp. 1928–1941. doi: 10.1016/j.csda.2007.06.015
-
(2008)
Comput. Stat. Data Anal
, vol.52
, Issue.4
, pp. 1928-1941
-
-
Zhang, C.X.1
Zhang, J.S.2
-
38
-
-
67650692780
-
A novel method for constructing ensemble classifiers
-
C.X. Zhang and J.S. Zhang, A novel method for constructing ensemble classifiers, Stat. Comput. 19(3) (2009), pp. 317–327. doi: 10.1007/s11222-008-9094-7
-
(2009)
Stat. Comput
, vol.19
, Issue.3
, pp. 317-327
-
-
Zhang, C.X.1
Zhang, J.S.2
-
39
-
-
84872409305
-
Exploiting unlabeled data to enhance diversity
-
M.L. Zhang and Z.H. Zhou, Exploiting unlabeled data to enhance diversity, Data Min. Knowl. Discov. 26(1) (2013), pp. 98–126. doi: 10.1007/s10618-011-0243-9
-
(2013)
Data Min. Knowl. Discov
, vol.26
, Issue.1
, pp. 98-126
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
40
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.H. Zhou, J. Wu, and W. Tang, Ensembling neural networks: Many could be better than all, Artif. Intell. 137(1-2) (2002), pp. 239–263. doi: 10.1016/S0004-3702(02)00190-X
-
(2002)
Artif. Intell
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.2
Tang, W.3
-
41
-
-
33845241081
-
Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection
-
M. Zhu and H.A. Chipman, Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection, Technometrics 48(4) (2006), pp. 491–502. doi: 10.1198/004017006000000093
-
(2006)
Technometrics
, vol.48
, Issue.4
, pp. 491-502
-
-
Zhu, M.1
Chipman, H.A.2
-
42
-
-
84857964470
-
Variable selection by ensembles for the Cox model
-
M. Zhu and G.Z. Fan, Variable selection by ensembles for the Cox model, J. Statist. Comput. Simul. 81(12) (2011), pp. 1983–1992. doi: 10.1080/00949655.2010.511622
-
(2011)
J. Statist. Comput. Simul
, vol.81
, Issue.12
, pp. 1983-1992
-
-
Zhu, M.1
Fan, G.Z.2
-
43
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
H. Zou, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc. 101(476) (2006), pp. 1418–429. doi: 10.1198/016214506000000735
-
(2006)
J. Amer. Statist. Assoc
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
-
44
-
-
16244401458
-
Regulzarization variable selection via the elastic net
-
H. Zou and T. Hastie, Regulzarization variable selection via the elastic net, J. R. Statist. Soc. (Ser. B) 67(2) (2005), pp. 301–320. doi: 10.1111/j.1467-9868.2005.00503.x
-
(2005)
J. R. Statist. Soc. (Ser. B)
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
45
-
-
51049104549
-
One-step sparse estimates in nonconcave penalized likelihood models
-
H. Zou and R.Z. Li, One-step sparse estimates in nonconcave penalized likelihood models, Ann. Stat. 36(4) (2008), pp. 1509–1533. doi: 10.1214/009053607000000802
-
(2008)
Ann. Stat
, vol.36
, Issue.4
, pp. 1509-1533
-
-
Zou, H.1
Li, R.Z.2
|