메뉴 건너뛰기




Volumn 42, Issue 3, 2015, Pages 630-647

RandGA: injecting randomness into parallel genetic algorithm for variable selection

Author keywords

ensemble learning; genetic algorithm; randomness; strength diversity tradeoff; variable selection

Indexed keywords


EID: 84918810308     PISSN: 02664763     EISSN: 13600532     Source Type: Journal    
DOI: 10.1080/02664763.2014.980788     Document Type: Article
Times cited : (12)

References (45)
  • 1
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • L. Breiman, Better subset regression using the nonnegative garrote, Technometrics 37(4) (1995), pp. 373–384. doi: 10.1080/00401706.1995.10484371
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 2
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • L. Breiman, Heuristics of instability and stabilization in model selection, Ann. Stat. 24(6) (1996), pp. 2350–2383. doi: 10.1214/aos/1032181158
    • (1996) Ann. Stat , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996), pp. 123–140.
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, Random forests, Mach. Learn. 45(1) (2001), pp. 5–32. doi: 10.1023/A:1010933404324
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorization
    • G. Brown, J. Wyatt, R. Harris, and X. Yao, Diversity creation methods: A survey and categorization, Inf. Fusion 6(1) (2005), pp. 5–20. doi: 10.1016/j.inffus.2004.04.004
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 6
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • P. Bühlmann and T. Hothorn, Boosting algorithms: Regularization, prediction and model fitting, Statist. Sci. 22(4) (2007), pp. 477–505. doi: 10.1214/07-STS242
    • (2007) Statist. Sci , vol.22 , Issue.4 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 7
    • 0030263980 scopus 로고    scopus 로고
    • Genetic algorithms and their statistical applications: An introduction
    • S. Chatterjee, M. Lauadto, and L.A. Lynch, Genetic algorithms and their statistical applications: An introduction, Comput. Stat. Data Anal. 22 (1996), pp. 633–651. doi: 10.1016/0167-9473(96)00011-4
    • (1996) Comput. Stat. Data Anal , vol.22 , pp. 633-651
    • Chatterjee, S.1    Lauadto, M.2    Lynch, L.A.3
  • 8
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression
    • B. Efron, T. Hastie, I. Hohnstone, and R. Tibshirani, Least angle regression, Ann. Stat. 32(2) (2004), pp. 407–499. doi: 10.1214/009053604000000067
    • (2004) Ann. Stat , vol.32 , Issue.2 , pp. 407-499
    • Efron, B.1    Hastie, T.2    Hohnstone, I.3    Tibshirani, R.4
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J.Q. Fan and R.Z. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Statist. Assoc. 96(456) (2001), pp. 1348–1360. doi: 10.1198/016214501753382273
    • (2001) J. Am. Statist. Assoc , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.Q.1    Li, R.Z.2
  • 10
    • 84918779466 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm, Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, 1996, pp. 148–156
    • Y. Freund and R. Schapire, Experiments with a new boosting algorithm, Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, 1996, pp. 148–156.
    • Freund, Y.1    Schapire, R.2
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J.H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Stat. 29(5) (2001), pp. 1189–1232. doi: 10.1214/aos/1013203451
    • (2001) Ann. Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 12
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: The bridge versus the lasso
    • W.J. Fu, Penalized regression: The bridge versus the lasso, J. Comput. Graph. Stat. 7(3) (1998), pp. 397–346.
    • (1998) J. Comput. Graph. Stat , vol.7 , Issue.3 , pp. 346-397
    • Fu, W.J.1
  • 13
    • 84873737900 scopus 로고    scopus 로고
    • Margin-based ordered aggregation for ensemble learning
    • L. Guo and S. Boukir, Margin-based ordered aggregation for ensemble learning, Pattern Recognit. Lett. 34(6) (2013), pp. 603–609. doi: 10.1016/j.patrec.2013.01.003
    • (2013) Pattern Recognit. Lett , vol.34 , Issue.6 , pp. 603-609
    • Guo, L.1    Boukir, S.2
  • 14
    • 27844472191 scopus 로고    scopus 로고
    • An empirical comparison of ensemble methods based on classification trees
    • M. Hamza and D. Larocque, An empirical comparison of ensemble methods based on classification trees, J. Statist. Comput. Simul. 75(8) (2005), pp. 629–643. doi: 10.1080/00949650410001729472
    • (2005) J. Statist. Comput. Simul , vol.75 , Issue.8 , pp. 629-643
    • Hamza, M.1    Larocque, D.2
  • 16
    • 84918800844 scopus 로고    scopus 로고
    • Neural network ensembles, cross validation, and active learning, in Advances in Neural Information Processing Systems, Vol. 7, G. Tesauro, D.S. Touretzky, T.K. Leen, eds., MIT Press, Cambridge, pp. 231–238
    • A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active learning, in Advances in Neural Information Processing Systems, Vol. 7, G. Tesauro, D.S. Touretzky, T.K. Leen, eds., MIT Press, Cambridge, pp. 231–238.
    • Krogh, A.1    Vedelsby, J.2
  • 17
    • 84918817830 scopus 로고    scopus 로고
    • Some recent developments in parametric and nonparametric regression models, Ph.D. diss., Raleigh, North Carolina State University, 2012
    • C.Y. Lin, Some recent developments in parametric and nonparametric regression models, Ph.D. diss., Raleigh, North Carolina State University, 2012.
    • Lin, C.Y.1
  • 18
    • 79551523991 scopus 로고    scopus 로고
    • Greedy optimization classifiers ensemble based on diversity
    • S.S. Mao, L.C. Jiao, L. Xiong, and S.P. Gou, Greedy optimization classifiers ensemble based on diversity, Pattern Recognit. 44(6) (2011), pp. 1245–1261. doi: 10.1016/j.patcog.2010.11.007
    • (2011) Pattern Recognit , vol.44 , Issue.6 , pp. 1245-1261
    • Mao, S.S.1    Jiao, L.C.2    Xiong, L.3    Gou, S.P.4
  • 19
    • 84918779926 scopus 로고    scopus 로고
    • Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, Morgan, Kafmann, San Francisco, CA, 1997, pp. 211–218
    • D. Margineantu and T. Dietterich, Pruning adaptive boosting, in Proceedings of the 14th International Conference on Machine Learning, Morgan, Kafmann, San Francisco, CA, 1997, pp. 211–218.
    • Margineantu, D.1    Dietterich, T.2
  • 21
    • 34548286564 scopus 로고    scopus 로고
    • Relaxed lasso
    • N. Meinshausen, Relaxed lasso, Comput. Stat. Data Anal. 52(1) (2007), pp. 374–393. doi: 10.1016/j.csda.2006.12.019
    • (2007) Comput. Stat. Data Anal , vol.52 , Issue.1 , pp. 374-393
    • Meinshausen, N.1
  • 22
    • 77958487535 scopus 로고    scopus 로고
    • Stability selection (with discussion)
    • N. Meinshausen and P. Bühlmann, Stability selection (with discussion), J. R. Statist. Soc. (Ser. B) 72(4) (2010), pp. 417–473. doi: 10.1111/j.1467-9868.2010.00740.x
    • (2010) J. R. Statist. Soc. (Ser. B) , vol.72 , Issue.4 , pp. 417-473
    • Meinshausen, N.1    Bühlmann, P.2
  • 23
    • 84878972963 scopus 로고    scopus 로고
    • An ensemble method for concept drift in nonstationary environment
    • D. Mejri, R. Khanchel, and M. Limam, An ensemble method for concept drift in nonstationary environment, J. Stat. Comput. Simul. 83(6) (2013), pp. 1115–1128. doi: 10.1080/00949655.2011.651797
    • (2013) J. Stat. Comput. Simul , vol.83 , Issue.6 , pp. 1115-1128
    • Mejri, D.1    Khanchel, R.2    Limam, M.3
  • 24
    • 84871245760 scopus 로고    scopus 로고
    • Ensemble approaches for regression: A survey
    • Article 10
    • J. Mendes-Moreira, C. Soares, A.M. Jorge, and J.F. de Sousa, Ensemble approaches for regression: A survey, ACM Comput. Surv. 45(1) (2012), p. 10. Article 10. doi: 10.1145/2379776.2379786
    • (2012) ACM Comput. Surv , vol.45 , Issue.1 , pp. 10
    • Mendes-Moreira, J.1    Soares, C.2    Jorge, A.M.3    de Sousa, J.F.4
  • 26
    • 84865612777 scopus 로고    scopus 로고
    • An extended variable inclusion and shrinkage algorithm for correlated variables
    • A. Mkhadri and M. Ouhourane, An extended variable inclusion and shrinkage algorithm for correlated variables, Comput. Stat. Data Anal. 57(1) (2013), pp. 631–644. doi: 10.1016/j.csda.2012.07.023
    • (2013) Comput. Stat. Data Anal , vol.57 , Issue.1 , pp. 631-644
    • Mkhadri, A.1    Ouhourane, M.2
  • 27
    • 84857037836 scopus 로고    scopus 로고
    • Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data
    • C.O. Plumpton, L.I. Kuncheva, N.N. Oosterhof, and S.J. Jognston, Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data, Pattern Recognit. 45(5) (2012), pp. 2101–2108. doi: 10.1016/j.patcog.2011.04.023
    • (2012) Pattern Recognit , vol.45 , Issue.5 , pp. 2101-2108
    • Plumpton, C.O.1    Kuncheva, L.I.2    Oosterhof, N.N.3    Jognston, S.J.4
  • 28
    • 54949144379 scopus 로고    scopus 로고
    • variable inclusion and shrinkage algorithms
    • P. Radchenko and G.M. James, variable inclusion and shrinkage algorithms, J. Amer. Statist. Assoc. 103(483) (2008), pp. 1304–1315. doi: 10.1198/016214508000000481
    • (2008) J. Amer. Statist. Assoc , vol.103 , Issue.483 , pp. 1304-1315
    • Radchenko, P.1    James, G.M.2
  • 30
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • L. Rokach, Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography, Comput. Stat. Data Anal. 53(12) (2009), pp. 4046–4072. doi: 10.1016/j.csda.2009.07.017
    • (2009) Comput. Stat. Data Anal , vol.53 , Issue.12 , pp. 4046-4072
    • Rokach, L.1
  • 31
    • 84871371181 scopus 로고    scopus 로고
    • Variable selection with error control: another look at stability selection
    • R.D. Shah and R.J. Samworth, Variable selection with error control: another look at stability selection, J. R. Statist. Soc. (Ser. B) 75(1) (2013), pp. 55–80. doi: 10.1111/j.1467-9868.2011.01034.x
    • (2013) J. R. Statist. Soc. (Ser. B) , vol.75 , Issue.1 , pp. 55-80
    • Shah, R.D.1    Samworth, R.J.2
  • 32
    • 78751611452 scopus 로고    scopus 로고
    • To explain or to predict?
    • G. Shmueli, To explain or to predict? Statist. Sci. 25(3) (2010), pp. 289–310. doi: 10.1214/10-STS330
    • (2010) Statist. Sci , vol.25 , Issue.3 , pp. 289-310
    • Shmueli, G.1
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. (Ser. B) 58(1) (1996), pp. 267–288.
    • (1996) J. R. Statist. Soc. (Ser. B) , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 79961243625 scopus 로고    scopus 로고
    • Random lasso
    • S.J. Wang, B. Nan, S. Rosset, and J. Zhu, Random lasso, Ann. Stat. 5(1) (2011), pp. 468–485. doi: 10.1214/10-AOAS377
    • (2011) Ann. Stat , vol.5 , Issue.1 , pp. 468-485
    • Wang, S.J.1    Nan, B.2    Rosset, S.3    Zhu, J.4
  • 35
    • 84862560560 scopus 로고    scopus 로고
    • Stochastic stepwise ensembles for variable selection
    • L. Xin and M. Zhu, Stochastic stepwise ensembles for variable selection, J. Comput. Graph. Stat. 21(2) (2012), pp. 275–294. doi: 10.1080/10618600.2012.679223
    • (2012) J. Comput. Graph. Stat , vol.21 , Issue.2 , pp. 275-294
    • Xin, L.1    Zhu, M.2
  • 36
    • 84859177457 scopus 로고    scopus 로고
    • An empirical bias-variance analysis of DECORATE ensemble method at different training sample sizes
    • C.X. Zhang, G.W. Wang, and J.S. Zhang, An empirical bias-variance analysis of DECORATE ensemble method at different training sample sizes, J. Appl. Stat. 39(4) (2012), pp. 829–850. doi: 10.1080/02664763.2011.620949
    • (2012) J. Appl. Stat , vol.39 , Issue.4 , pp. 829-850
    • Zhang, C.X.1    Wang, G.W.2    Zhang, J.S.3
  • 37
    • 35748956765 scopus 로고    scopus 로고
    • A local boosting algorithm for solving classification problems
    • C.X. Zhang and J.S. Zhang, A local boosting algorithm for solving classification problems, Comput. Stat. Data Anal. 52(4) (2008), pp. 1928–1941. doi: 10.1016/j.csda.2007.06.015
    • (2008) Comput. Stat. Data Anal , vol.52 , Issue.4 , pp. 1928-1941
    • Zhang, C.X.1    Zhang, J.S.2
  • 38
    • 67650692780 scopus 로고    scopus 로고
    • A novel method for constructing ensemble classifiers
    • C.X. Zhang and J.S. Zhang, A novel method for constructing ensemble classifiers, Stat. Comput. 19(3) (2009), pp. 317–327. doi: 10.1007/s11222-008-9094-7
    • (2009) Stat. Comput , vol.19 , Issue.3 , pp. 317-327
    • Zhang, C.X.1    Zhang, J.S.2
  • 39
    • 84872409305 scopus 로고    scopus 로고
    • Exploiting unlabeled data to enhance diversity
    • M.L. Zhang and Z.H. Zhou, Exploiting unlabeled data to enhance diversity, Data Min. Knowl. Discov. 26(1) (2013), pp. 98–126. doi: 10.1007/s10618-011-0243-9
    • (2013) Data Min. Knowl. Discov , vol.26 , Issue.1 , pp. 98-126
    • Zhang, M.L.1    Zhou, Z.H.2
  • 40
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.H. Zhou, J. Wu, and W. Tang, Ensembling neural networks: Many could be better than all, Artif. Intell. 137(1-2) (2002), pp. 239–263. doi: 10.1016/S0004-3702(02)00190-X
    • (2002) Artif. Intell , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 41
    • 33845241081 scopus 로고    scopus 로고
    • Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection
    • M. Zhu and H.A. Chipman, Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection, Technometrics 48(4) (2006), pp. 491–502. doi: 10.1198/004017006000000093
    • (2006) Technometrics , vol.48 , Issue.4 , pp. 491-502
    • Zhu, M.1    Chipman, H.A.2
  • 42
    • 84857964470 scopus 로고    scopus 로고
    • Variable selection by ensembles for the Cox model
    • M. Zhu and G.Z. Fan, Variable selection by ensembles for the Cox model, J. Statist. Comput. Simul. 81(12) (2011), pp. 1983–1992. doi: 10.1080/00949655.2010.511622
    • (2011) J. Statist. Comput. Simul , vol.81 , Issue.12 , pp. 1983-1992
    • Zhu, M.1    Fan, G.Z.2
  • 43
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc. 101(476) (2006), pp. 1418–429. doi: 10.1198/016214506000000735
    • (2006) J. Amer. Statist. Assoc , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 44
    • 16244401458 scopus 로고    scopus 로고
    • Regulzarization variable selection via the elastic net
    • H. Zou and T. Hastie, Regulzarization variable selection via the elastic net, J. R. Statist. Soc. (Ser. B) 67(2) (2005), pp. 301–320. doi: 10.1111/j.1467-9868.2005.00503.x
    • (2005) J. R. Statist. Soc. (Ser. B) , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 45
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • H. Zou and R.Z. Li, One-step sparse estimates in nonconcave penalized likelihood models, Ann. Stat. 36(4) (2008), pp. 1509–1533. doi: 10.1214/009053607000000802
    • (2008) Ann. Stat , vol.36 , Issue.4 , pp. 1509-1533
    • Zou, H.1    Li, R.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.