메뉴 건너뛰기




Volumn 43, Issue 2, 2015, Pages 233-250

A mutual association based nonlinear ensemble mechanism for time series forecasting

Author keywords

Accuracy improvement; Artificial neural networks; Box Jenkins models; Combining multiple forecasts; Nonlinear ensemble; Time series forecasting

Indexed keywords

NEURAL NETWORKS; TIME SERIES; TIME SERIES ANALYSIS;

EID: 84937976706     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-014-0641-y     Document Type: Article
Times cited : (16)

References (42)
  • 1
    • 84861452391 scopus 로고    scopus 로고
    • A novel weighted ensemble technique for time series forecasting. In: Pacific Asia Conference on Knowledge Discovery and Data Mining(PAKDD) (ed) Advances in knowledge discovery and data mining
    • Adhikari R, Agrawal RK (2012) A novel weighted ensemble technique for time series forecasting. In: Pacific Asia Conference on Knowledge Discovery and Data Mining(PAKDD) (ed) Advances in knowledge discovery and data mining, pp 38–49
    • (2012) pp 38–49
    • Adhikari, R.1    Agrawal, R.K.2
  • 2
    • 84920258960 scopus 로고    scopus 로고
    • Performance evaluation of weights selection schemes for linear combination of multiple forecasts
    • Adhikari R, Agrawal RK (2012) Performance evaluation of weights selection schemes for linear combination of multiple forecasts. Artif Intell Rev 42 (4). doi:10.1007/s10462-012-9361-z
    • (2012) Artif Intell Rev , vol.42 , Issue.4
    • Adhikari, R.1    Agrawal, R.K.2
  • 3
    • 84897988945 scopus 로고    scopus 로고
    • A combination of artificial neural network and random walk models for financial time series forecasting
    • Adhikari R, Agrawal RK (2014) A combination of artificial neural network and random walk models for financial time series forecasting. Neural Comput and Applic 24(6):1441–1449
    • (2014) Neural Comput and Applic , vol.24 , Issue.6 , pp. 1441-1449
    • Adhikari, R.1    Agrawal, R.K.2
  • 4
    • 33747888847 scopus 로고    scopus 로고
    • Persistence in forecasting performance and conditional combination strategies
    • Aiolfi M, Timmermann A (2006) Persistence in forecasting performance and conditional combination strategies. J Econom 135(1):31–53
    • (2006) J Econom , vol.135 , Issue.1 , pp. 31-53
    • Aiolfi, M.1    Timmermann, A.2
  • 5
    • 0041678394 scopus 로고
    • An empirical analysis of the accuracy of sa, ols, erls and nrls combination forecasts
    • Aksu C, Gunter SI (1992) An empirical analysis of the accuracy of sa, ols, erls and nrls combination forecasts. Int J Forecast 8(1):27–43
    • (1992) Int J Forecast , vol.8 , Issue.1 , pp. 27-43
    • Aksu, C.1    Gunter, S.I.2
  • 6
    • 79956363043 scopus 로고    scopus 로고
    • Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
    • Andrawis RR, Atiya AF, El-Shishiny H (2011) Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. Int J Forecast 27(3):672–688
    • (2011) Int J Forecast , vol.27 , Issue.3 , pp. 672-688
    • Andrawis, R.R.1    Atiya, A.F.2    El-Shishiny, H.3
  • 8
    • 0014629731 scopus 로고
    • The combination of forecasts
    • Bates JM, Granger CWJ (1969) The combination of forecasts. Oper Res Q 20(4):451–468
    • (1969) Oper Res Q , vol.20 , Issue.4 , pp. 451-468
    • Bates, J.M.1    Granger, C.W.J.2
  • 10
    • 0016522307 scopus 로고
    • A Bayesian approach to the linear combination of forecasts
    • Bunn DW (1975) A Bayesian approach to the linear combination of forecasts. Oper Res Q:325–329
    • (1975) Oper Res Q , pp. 325-329
    • Bunn, D.W.1
  • 11
    • 0000589618 scopus 로고
    • A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821-1934 and a new analysis
    • Campbell M, Walker A (1977) A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821-1934 and a new analysis. J R Stat Soc Ser A (general):411–431
    • (1977) J R Stat Soc Ser A (general) , pp. 411-431
    • Campbell, M.1    Walker, A.2
  • 12
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • Clemen RT (1989) Combining forecasts: A review and annotated bibliography. Int J Forecast 5(4):559–583
    • (1989) Int J Forecast , vol.5 , Issue.4 , pp. 559-583
    • Clemen, R.T.1
  • 13
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22(3):443–473
    • (2006) Int J Forecast , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 14
    • 84937991596 scopus 로고    scopus 로고
    • Delft center for systems and control (2013) MATLAB toolbox ARMASA
    • Delft center for systems and control (2013) MATLAB toolbox ARMASA [online]. http://www.dcsc.tudelft.nl/Research/Software
  • 15
    • 0003396255 scopus 로고    scopus 로고
    • Neural network toolbox user’s guide. The MathWorks Natic
    • Demuth H, Beale M, Hagan M (2010) Neural network toolbox user’s guide. The MathWorks Natic, MA
    • (2010) MA
    • Demuth, H.1    Beale, M.2    Hagan, M.3
  • 16
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the air line data
    • Faraway J, Chatfield C (1998) Time series forecasting with neural networks: A comparative study using the air line data. J R Stat Soc Ser C Appl Stat 47(2):231–250
    • (1998) J R Stat Soc Ser C Appl Stat , vol.47 , Issue.2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 17
    • 33744970902 scopus 로고    scopus 로고
    • Model combination in neural-based forecasting
    • Freitas PS, Rodrigues AJ (2006) Model combination in neural-based forecasting. Eur J Oper Res 173(3):801–814
    • (2006) Eur J Oper Res , vol.173 , Issue.3 , pp. 801-814
    • Freitas, P.S.1    Rodrigues, A.J.2
  • 18
    • 80053306318 scopus 로고    scopus 로고
    • A novel neural network ensemble architecture for time series forecasting
    • Gheyas IA, Smith LS (2011) A novel neural network ensemble architecture for time series forecasting. Neurocomputing 74(18):3855–3864
    • (2011) Neurocomputing , vol.74 , Issue.18 , pp. 3855-3864
    • Gheyas, I.A.1    Smith, L.S.2
  • 20
    • 84984442855 scopus 로고
    • Improved methods of combining forecasts
    • Granger CWJ, Ramanathan R (1984) Improved methods of combining forecasts. J Forecast 3(2):197–204
    • (1984) J Forecast , vol.3 , Issue.2 , pp. 197-204
    • Granger, C.W.J.1    Ramanathan, R.2
  • 21
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan MT, Menhaj MB (1994) Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 22
    • 52949087146 scopus 로고    scopus 로고
    • Improving artificial neural networks’ performance in seasonal time series forecasting
    • Hamzaçebi C (2008) Improving artificial neural networks’ performance in seasonal time series forecasting. Inf Sci 178(23):4550–4559
    • (2008) Inf Sci , vol.178 , Issue.23 , pp. 4550-4559
    • Hamzaçebi, C.1
  • 23
    • 56349131204 scopus 로고    scopus 로고
    • Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting
    • Hamzaçebi C, Akay D, Kutay F (2009) Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Syst Appl 36(2):3839–3844
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3839-3844
    • Hamzaçebi, C.1    Akay, D.2    Kutay, F.3
  • 25
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 26
    • 84937991599 scopus 로고    scopus 로고
    • Hyndman RJ (2013) Time Series Data Library (TSDL)
    • Hyndman RJ (2013) Time Series Data Library (TSDL). http://robjhyndman.com/TSDL/
  • 27
    • 38949170600 scopus 로고    scopus 로고
    • Simple robust averages of forecasts: Some empirical results
    • Jose VRR, Winkler RL (2008) Simple robust averages of forecasts: Some empirical results. Int J Forecast 24(1):163–169
    • (2008) Int J Forecast , vol.24 , Issue.1 , pp. 163-169
    • Jose, V.R.R.1    Winkler, R.L.2
  • 28
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi R, et al. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI), vol 14, pp 1137–1145
    • (1995) International joint conference on artificial intelligence (IJCAI) , vol.14 , pp. 1137-1145
    • Kohavi, R.1
  • 29
    • 77952545391 scopus 로고    scopus 로고
    • Meta-learning for time series forecasting and forecast combination
    • Lemke C, Gabrys B (2010) Meta-learning for time series forecasting and forecast combination. Neurocomputing 73(10):2006– 2016
    • (2010) Neurocomputing , vol.73 , Issue.10 , pp. 2006-2016
    • Lemke, C.1    Gabrys, B.2
  • 30
    • 84861441613 scopus 로고    scopus 로고
    • The application of an ensemble of boosted elman networks to time series prediction: A benchmark study
    • Lim CP, Goh WY (2005) The application of an ensemble of boosted elman networks to time series prediction: A benchmark study. Int J Comput Intell 3(2):119– 126
    • (2005) Int J Comput Intell , vol.3 , Issue.2 , pp. 119-126
    • Lim, C.P.1    Goh, W.Y.2
  • 31
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: International Joint Conference on Neural Networks (IJCN), vol 3. IEEE
    • Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: International Joint Conference on Neural Networks (IJCN), vol 3. IEEE, pp 21–26
    • (1990) pp 21–26
    • Nguyen, D.1    Widrow, B.2
  • 32
    • 84937991601 scopus 로고    scopus 로고
    • Pacific FX database (2013)
    • Pacific FX database (2013). http://fx.sauder.ubc.ca/data.html
  • 33
    • 78650928542 scopus 로고    scopus 로고
    • Prediction intervals in conditionally heteroscedastic time series with stochastic components
    • Pellegrini S, Ruiz E, Espasa A (2011) Prediction intervals in conditionally heteroscedastic time series with stochastic components. Int J Forecast 27(2):308–319
    • (2011) Int J Forecast , vol.27 , Issue.2 , pp. 308-319
    • Pellegrini, S.1    Ruiz, E.2    Espasa, A.3
  • 34
    • 0000411467 scopus 로고
    • Combining three estimates of gross domestic product
    • Reid DJ (1968) Combining three estimates of gross domestic product. Economica 35:431–444
    • (1968) Economica , vol.35 , pp. 431-444
    • Reid, D.J.1
  • 35
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by backpropagating errors. Nature 323(6188):533–536
    • (1986) Nature , vol.323 , Issue.6188 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 38
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machines classifiers
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machines classifiers. Neural Process Lett 9(3):293–300
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 39
    • 50849124115 scopus 로고    scopus 로고
    • Measuring and testing dependence by correlation of distances
    • Székely GJ, Rizzo ML, Bakirov NK et al (2007) Measuring and testing dependence by correlation of distances. Neural Process Lett 35(6):2769–2794
    • (2007) Neural Process Lett , vol.35 , Issue.6 , pp. 2769-2794
    • Székely, G.J.1    Rizzo, M.L.2    Bakirov, N.K.3
  • 40
    • 37849189858 scopus 로고    scopus 로고
    • Estimating the number of hidden neurons in a feedforward network using the singular value decomposition
    • Teoh EJ, Tan KC, Xiang C (2006) Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. IEEE Trans Neural Netw 17(6):1623–1629
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.6 , pp. 1623-1629
    • Teoh, E.J.1    Tan, K.C.2    Xiang, C.3
  • 42
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • Zhang GP (2007) A neural network ensemble method with jittered training data for time series forecasting. Inf Sci 177(23):5329–5346
    • (2007) Inf Sci , vol.177 , Issue.23 , pp. 5329-5346
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.