-
1
-
-
84861452391
-
A novel weighted ensemble technique for time series forecasting. In: Pacific Asia Conference on Knowledge Discovery and Data Mining(PAKDD) (ed) Advances in knowledge discovery and data mining
-
Adhikari R, Agrawal RK (2012) A novel weighted ensemble technique for time series forecasting. In: Pacific Asia Conference on Knowledge Discovery and Data Mining(PAKDD) (ed) Advances in knowledge discovery and data mining, pp 38–49
-
(2012)
pp 38–49
-
-
Adhikari, R.1
Agrawal, R.K.2
-
2
-
-
84920258960
-
Performance evaluation of weights selection schemes for linear combination of multiple forecasts
-
Adhikari R, Agrawal RK (2012) Performance evaluation of weights selection schemes for linear combination of multiple forecasts. Artif Intell Rev 42 (4). doi:10.1007/s10462-012-9361-z
-
(2012)
Artif Intell Rev
, vol.42
, Issue.4
-
-
Adhikari, R.1
Agrawal, R.K.2
-
3
-
-
84897988945
-
A combination of artificial neural network and random walk models for financial time series forecasting
-
Adhikari R, Agrawal RK (2014) A combination of artificial neural network and random walk models for financial time series forecasting. Neural Comput and Applic 24(6):1441–1449
-
(2014)
Neural Comput and Applic
, vol.24
, Issue.6
, pp. 1441-1449
-
-
Adhikari, R.1
Agrawal, R.K.2
-
4
-
-
33747888847
-
Persistence in forecasting performance and conditional combination strategies
-
Aiolfi M, Timmermann A (2006) Persistence in forecasting performance and conditional combination strategies. J Econom 135(1):31–53
-
(2006)
J Econom
, vol.135
, Issue.1
, pp. 31-53
-
-
Aiolfi, M.1
Timmermann, A.2
-
5
-
-
0041678394
-
An empirical analysis of the accuracy of sa, ols, erls and nrls combination forecasts
-
Aksu C, Gunter SI (1992) An empirical analysis of the accuracy of sa, ols, erls and nrls combination forecasts. Int J Forecast 8(1):27–43
-
(1992)
Int J Forecast
, vol.8
, Issue.1
, pp. 27-43
-
-
Aksu, C.1
Gunter, S.I.2
-
6
-
-
79956363043
-
Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
-
Andrawis RR, Atiya AF, El-Shishiny H (2011) Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. Int J Forecast 27(3):672–688
-
(2011)
Int J Forecast
, vol.27
, Issue.3
, pp. 672-688
-
-
Andrawis, R.R.1
Atiya, A.F.2
El-Shishiny, H.3
-
8
-
-
0014629731
-
The combination of forecasts
-
Bates JM, Granger CWJ (1969) The combination of forecasts. Oper Res Q 20(4):451–468
-
(1969)
Oper Res Q
, vol.20
, Issue.4
, pp. 451-468
-
-
Bates, J.M.1
Granger, C.W.J.2
-
10
-
-
0016522307
-
A Bayesian approach to the linear combination of forecasts
-
Bunn DW (1975) A Bayesian approach to the linear combination of forecasts. Oper Res Q:325–329
-
(1975)
Oper Res Q
, pp. 325-329
-
-
Bunn, D.W.1
-
11
-
-
0000589618
-
A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821-1934 and a new analysis
-
Campbell M, Walker A (1977) A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821-1934 and a new analysis. J R Stat Soc Ser A (general):411–431
-
(1977)
J R Stat Soc Ser A (general)
, pp. 411-431
-
-
Campbell, M.1
Walker, A.2
-
12
-
-
45249128876
-
Combining forecasts: A review and annotated bibliography
-
Clemen RT (1989) Combining forecasts: A review and annotated bibliography. Int J Forecast 5(4):559–583
-
(1989)
Int J Forecast
, vol.5
, Issue.4
, pp. 559-583
-
-
Clemen, R.T.1
-
13
-
-
33745952342
-
25 years of time series forecasting
-
De Gooijer JG, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22(3):443–473
-
(2006)
Int J Forecast
, vol.22
, Issue.3
, pp. 443-473
-
-
De Gooijer, J.G.1
Hyndman, R.J.2
-
14
-
-
84937991596
-
-
Delft center for systems and control (2013) MATLAB toolbox ARMASA
-
Delft center for systems and control (2013) MATLAB toolbox ARMASA [online]. http://www.dcsc.tudelft.nl/Research/Software
-
-
-
-
15
-
-
0003396255
-
Neural network toolbox user’s guide. The MathWorks Natic
-
Demuth H, Beale M, Hagan M (2010) Neural network toolbox user’s guide. The MathWorks Natic, MA
-
(2010)
MA
-
-
Demuth, H.1
Beale, M.2
Hagan, M.3
-
16
-
-
0039988139
-
Time series forecasting with neural networks: A comparative study using the air line data
-
Faraway J, Chatfield C (1998) Time series forecasting with neural networks: A comparative study using the air line data. J R Stat Soc Ser C Appl Stat 47(2):231–250
-
(1998)
J R Stat Soc Ser C Appl Stat
, vol.47
, Issue.2
, pp. 231-250
-
-
Faraway, J.1
Chatfield, C.2
-
17
-
-
33744970902
-
Model combination in neural-based forecasting
-
Freitas PS, Rodrigues AJ (2006) Model combination in neural-based forecasting. Eur J Oper Res 173(3):801–814
-
(2006)
Eur J Oper Res
, vol.173
, Issue.3
, pp. 801-814
-
-
Freitas, P.S.1
Rodrigues, A.J.2
-
18
-
-
80053306318
-
A novel neural network ensemble architecture for time series forecasting
-
Gheyas IA, Smith LS (2011) A novel neural network ensemble architecture for time series forecasting. Neurocomputing 74(18):3855–3864
-
(2011)
Neurocomputing
, vol.74
, Issue.18
, pp. 3855-3864
-
-
Gheyas, I.A.1
Smith, L.S.2
-
20
-
-
84984442855
-
Improved methods of combining forecasts
-
Granger CWJ, Ramanathan R (1984) Improved methods of combining forecasts. J Forecast 3(2):197–204
-
(1984)
J Forecast
, vol.3
, Issue.2
, pp. 197-204
-
-
Granger, C.W.J.1
Ramanathan, R.2
-
21
-
-
0028543366
-
Training feedforward networks with the marquardt algorithm
-
Hagan MT, Menhaj MB (1994) Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993
-
(1994)
IEEE Trans Neural Netw
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.B.2
-
22
-
-
52949087146
-
Improving artificial neural networks’ performance in seasonal time series forecasting
-
Hamzaçebi C (2008) Improving artificial neural networks’ performance in seasonal time series forecasting. Inf Sci 178(23):4550–4559
-
(2008)
Inf Sci
, vol.178
, Issue.23
, pp. 4550-4559
-
-
Hamzaçebi, C.1
-
23
-
-
56349131204
-
Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting
-
Hamzaçebi C, Akay D, Kutay F (2009) Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Syst Appl 36(2):3839–3844
-
(2009)
Expert Syst Appl
, vol.36
, Issue.2
, pp. 3839-3844
-
-
Hamzaçebi, C.1
Akay, D.2
Kutay, F.3
-
25
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366
-
(1989)
Neural Netw
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
26
-
-
84937991599
-
-
Hyndman RJ (2013) Time Series Data Library (TSDL)
-
Hyndman RJ (2013) Time Series Data Library (TSDL). http://robjhyndman.com/TSDL/
-
-
-
-
27
-
-
38949170600
-
Simple robust averages of forecasts: Some empirical results
-
Jose VRR, Winkler RL (2008) Simple robust averages of forecasts: Some empirical results. Int J Forecast 24(1):163–169
-
(2008)
Int J Forecast
, vol.24
, Issue.1
, pp. 163-169
-
-
Jose, V.R.R.1
Winkler, R.L.2
-
28
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Kohavi R, et al. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI), vol 14, pp 1137–1145
-
(1995)
International joint conference on artificial intelligence (IJCAI)
, vol.14
, pp. 1137-1145
-
-
Kohavi, R.1
-
29
-
-
77952545391
-
Meta-learning for time series forecasting and forecast combination
-
Lemke C, Gabrys B (2010) Meta-learning for time series forecasting and forecast combination. Neurocomputing 73(10):2006– 2016
-
(2010)
Neurocomputing
, vol.73
, Issue.10
, pp. 2006-2016
-
-
Lemke, C.1
Gabrys, B.2
-
30
-
-
84861441613
-
The application of an ensemble of boosted elman networks to time series prediction: A benchmark study
-
Lim CP, Goh WY (2005) The application of an ensemble of boosted elman networks to time series prediction: A benchmark study. Int J Comput Intell 3(2):119– 126
-
(2005)
Int J Comput Intell
, vol.3
, Issue.2
, pp. 119-126
-
-
Lim, C.P.1
Goh, W.Y.2
-
31
-
-
0025536870
-
Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: International Joint Conference on Neural Networks (IJCN), vol 3. IEEE
-
Nguyen D, Widrow B (1990) Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: International Joint Conference on Neural Networks (IJCN), vol 3. IEEE, pp 21–26
-
(1990)
pp 21–26
-
-
Nguyen, D.1
Widrow, B.2
-
32
-
-
84937991601
-
-
Pacific FX database (2013)
-
Pacific FX database (2013). http://fx.sauder.ubc.ca/data.html
-
-
-
-
33
-
-
78650928542
-
Prediction intervals in conditionally heteroscedastic time series with stochastic components
-
Pellegrini S, Ruiz E, Espasa A (2011) Prediction intervals in conditionally heteroscedastic time series with stochastic components. Int J Forecast 27(2):308–319
-
(2011)
Int J Forecast
, vol.27
, Issue.2
, pp. 308-319
-
-
Pellegrini, S.1
Ruiz, E.2
Espasa, A.3
-
34
-
-
0000411467
-
Combining three estimates of gross domestic product
-
Reid DJ (1968) Combining three estimates of gross domestic product. Economica 35:431–444
-
(1968)
Economica
, vol.35
, pp. 431-444
-
-
Reid, D.J.1
-
35
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by backpropagating errors. Nature 323(6188):533–536
-
(1986)
Nature
, vol.323
, Issue.6188
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
38
-
-
0032638628
-
Least squares support vector machines classifiers
-
Suykens JAK, Vandewalle J (1999) Least squares support vector machines classifiers. Neural Process Lett 9(3):293–300
-
(1999)
Neural Process Lett
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
39
-
-
50849124115
-
Measuring and testing dependence by correlation of distances
-
Székely GJ, Rizzo ML, Bakirov NK et al (2007) Measuring and testing dependence by correlation of distances. Neural Process Lett 35(6):2769–2794
-
(2007)
Neural Process Lett
, vol.35
, Issue.6
, pp. 2769-2794
-
-
Székely, G.J.1
Rizzo, M.L.2
Bakirov, N.K.3
-
40
-
-
37849189858
-
Estimating the number of hidden neurons in a feedforward network using the singular value decomposition
-
Teoh EJ, Tan KC, Xiang C (2006) Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. IEEE Trans Neural Netw 17(6):1623–1629
-
(2006)
IEEE Trans Neural Netw
, vol.17
, Issue.6
, pp. 1623-1629
-
-
Teoh, E.J.1
Tan, K.C.2
Xiang, C.3
-
42
-
-
34548619946
-
A neural network ensemble method with jittered training data for time series forecasting
-
Zhang GP (2007) A neural network ensemble method with jittered training data for time series forecasting. Inf Sci 177(23):5329–5346
-
(2007)
Inf Sci
, vol.177
, Issue.23
, pp. 5329-5346
-
-
Zhang, G.P.1
|