메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages 25-33

Network-constrained group lasso for high-dimensional multinomial classification with application to cancer subtype prediction

Author keywords

Cancer subtype prediction; Group lasso; Multinomial logit model; Network constraint; Proximal gradient algorithm

Indexed keywords

CASE REPORT; CLASSIFICATION; GENE EXPRESSION; HUMAN; PREDICTION; TUMOR MODEL;

EID: 84981745164     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S17686     Document Type: Article
Times cited : (13)

References (37)
  • 1
    • 41649114164 scopus 로고    scopus 로고
    • Enabling personalized cancer medicine through analysis of gene-expression patterns
    • van’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008; 452: 564-70.
    • (2008) Nature , vol.452 , pp. 564-570
    • Van’T Veer, L.J.1    Bernards, R.2
  • 2
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics. 2004; 5 (3): 427-43.
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 3
    • 0036740519 scopus 로고    scopus 로고
    • Multi-class cancer classification via partial least squares with gene expression profiles
    • Nguyen DV, Rocke DM. Multi-class cancer classification via partial least squares with gene expression profiles. Bioinformatics. 2002; 18 (9): 1216-26.
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1216-1226
    • Nguyen, D.V.1    Rocke, D.M.2
  • 4
    • 33645057908 scopus 로고    scopus 로고
    • Multi-class cancer classification using multinomial probit regression with Bayesian gene selection
    • Zhou X, Wang X. Multi-class cancer classification using multinomial probit regression with Bayesian gene selection. Syst Biol. 2006; 153 (2): 70-8.
    • (2006) Syst Biol , vol.153 , Issue.2 , pp. 70-78
    • Zhou, X.1    Wang, X.2
  • 5
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Daz-Uriarte R, Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006; 7: 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Daz-Uriarte, R.1    Res, S.2
  • 6
    • 60849121073 scopus 로고    scopus 로고
    • Network-based support vector machine for classification of microarray samples
    • Zhu Y, Shen X, Pan W. Network-based support vector machine for classification of microarray samples. BMC Bioinformatics. 2009; 10: S21.
    • (2009) BMC Bioinformatics , vol.10 , pp. S21
    • Zhu, Y.1    Shen, X.2    Pan, W.3
  • 7
    • 43049089414 scopus 로고    scopus 로고
    • The f∞-norm support vector machine
    • Zou H, Yuan M. The f∞-norm support vector machine. Stat Sin. 2008; 18: 379-98.
    • (2008) Stat Sin , vol.18 , pp. 379-398
    • Zou, H.1    Yuan, M.2
  • 8
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000; 16 (10): 906-14.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2
  • 9
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • Chuang HY, Lee E. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007; 3: 140.
    • (2007) Mol Syst Biol , vol.3 , pp. 140
    • Chuang, H.Y.1    Lee, E.2
  • 10
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002; 97 (457): 77-87.
    • (2002) J am Stat Assoc , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 11
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Lee Y, Lee CK. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics. 2003; 19 (9): 1132-9.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1132-1139
    • Lee, Y.1    Lee, C.K.2
  • 13
    • 84862181484 scopus 로고    scopus 로고
    • Prognostic gene signatures for patient stratification in breast cancer: Accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions
    • Cun Y, Frhlich HF. Prognostic gene signatures for patient stratification in breast cancer: accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions. BMC Bioinformatics. 2012; 13: 69-81.
    • (2012) BMC Bioinformatics , vol.13 , pp. 69-81
    • Cun, Y.1    Frhlich, H.F.2
  • 15
    • 34547976903 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression via Bayesian L1 regularisation
    • Cawley GC, Talbot NLC, Girolami M. Sparse multinomial logistic regression via Bayesian L1 regularisation. NIPS. 2007; 19: 209-16.
    • (2007) NIPS , vol.19 , pp. 209-216
    • Cawley, G.C.1    Talbot, N.2    Girolami, M.3
  • 17
    • 84879049361 scopus 로고    scopus 로고
    • Sparse logistic regression with a 11/2 penalty for gene selection in cancer classification
    • Liang Y, Liu C. Sparse logistic regression with a 11/2 penalty for gene selection in cancer classification. Bioinformatics. 2013; 14: 198.
    • (2013) Bioinformatics , vol.14 , pp. 198
    • Liang, Y.1    Liu, C.2
  • 18
    • 84889083914 scopus 로고    scopus 로고
    • Sparse group lasso and high dimensional multinomial classification
    • Vincent M, Hansen NR. Sparse group lasso and high dimensional multinomial classification. Comput Stat Data Anal. 2014; 71: 771-86.
    • (2014) Comput Stat Data Anal , vol.71 , pp. 771-786
    • Vincent, M.1    Hansen, N.R.2
  • 19
    • 37849035696 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • Meier L. The group lasso for logistic regression. J R Stat Soc Ser B Stat Methodol. 2008; 70 (1): 53-71.
    • (2008) J R Stat Soc Ser B Stat Methodol , vol.70 , Issue.1 , pp. 53-71
    • Meier, L.1
  • 21
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group lasso with application to microarray data analysis
    • Ma S, Xiao S, Jian H. Supervised group lasso with application to microarray data analysis. BMC Bioinformatics. 2007; 8: 60-76.
    • (2007) BMC Bioinformatics , vol.8 , pp. 60-76
    • Ma, S.1    Xiao, S.2    Jian, H.3
  • 22
    • 80052846970 scopus 로고    scopus 로고
    • The sparse Laplacian shrinkage estimator for high-dimensional regression
    • Huang J, Ma S, Li H, Zhang CH. The sparse Laplacian shrinkage estimator for high-dimensional regression. Ann Stat. 2011; 39 (4): 2021-46.
    • (2011) Ann Stat , vol.39 , Issue.4 , pp. 2021-2046
    • Huang, J.1    Ma, S.2    Li, H.3    Zhang, C.H.4
  • 23
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005; 4: 17.
    • (2005) Stat Appl Genet Mol Biol , vol.4 , pp. 17
    • Zhang, B.1    Horvath, S.2
  • 24
    • 84861843896 scopus 로고    scopus 로고
    • Identifying dysregulated pathways in cancers from pathway interaction networks
    • Liu K, Liu Z. Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics. 2012; 13: 126.
    • (2012) BMC Bioinformatics , vol.13 , pp. 126
    • Liu, K.1    Liu, Z.2
  • 25
    • 79952423666 scopus 로고    scopus 로고
    • Subnetwork state functions define dysregulated subnetworks in cancer
    • Chowdhury SA, Nibbe RK. Subnetwork state functions define dysregulated subnetworks in cancer. J Comp Biol. 2011; 18 (3): 263-81.
    • (2011) J Comp Biol , vol.18 , Issue.3 , pp. 263-281
    • Chowdhury, S.A.1    Nibbe, R.K.2
  • 26
    • 84858126071 scopus 로고    scopus 로고
    • MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review
    • Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012; 4: 143-59.
    • (2012) EMBO Mol Med , vol.4 , pp. 143-159
    • Iorio, M.V.1    Croce, C.M.2
  • 27
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics. 2008; 29 (9): 1175-82.
    • (2008) Bioinformatics , vol.29 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 28
    • 84874848060 scopus 로고    scopus 로고
    • Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis
    • Chen J, Bushman FD, Lewis JD, Wu GD, Li H. Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics. 2013; 14: 244-58.
    • (2013) Biostatistics , vol.14 , pp. 244-258
    • Chen, J.1    Bushman, F.D.2    Lewis, J.D.3    Wu, G.D.4    Li, H.5
  • 29
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2009; 2: 183-202.
    • (2009) SIAM J Imaging Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 30
    • 70350593691 scopus 로고    scopus 로고
    • Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
    • Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process. 2009; 18: 2419-34.
    • (2009) IEEE Trans Image Process , vol.18 , pp. 2419-2434
    • Beck, A.1    Teboulle, M.2
  • 31
    • 84893167354 scopus 로고    scopus 로고
    • A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression
    • Liu Y, Gu Q. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression. BMC Bioinformatics. 2014; 15: 37.
    • (2014) BMC Bioinformatics , vol.15 , pp. 37
    • Liu, Y.1    Gu, Q.2
  • 32
    • 0034020459 scopus 로고    scopus 로고
    • Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice
    • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000; 25: 55-7.
    • (2000) Nat Genet , vol.25 , pp. 55-57
    • Holland, E.C.1    Celestino, J.2    Dai, C.3    Schaefer, L.4    Sawaya, R.E.5    Fuller, G.N.6
  • 33
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc. 2001; 96: 1348-60.
    • (2001) J am Stat Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 34
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang CH. Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 2010; 38: 894-942.
    • (2010) Ann Stat , vol.38 , pp. 894-942
    • Zhang, C.H.1
  • 35
    • 85016683004 scopus 로고    scopus 로고
    • Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors
    • Breheny P, Huang J. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Stat Comput. 2013: 1-15.
    • (2013) Stat Comput , pp. 1-15
    • Breheny, P.1    Huang, J.2
  • 36
    • 84876058250 scopus 로고    scopus 로고
    • Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis
    • Chen J, Li H. Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis. Ann Appl Stat. 2013; 7: 418-42.
    • (2013) Ann Appl Stat , vol.7 , pp. 418-442
    • Chen, J.1    Li, H.2
  • 37
    • 84865082160 scopus 로고    scopus 로고
    • Associating microbiome composition with environmental covariates using generalized UniFrac distances
    • Chen J, Bittinger K, Charlson ES, et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012; 28: 2106-13.
    • (2012) Bioinformatics , vol.28 , pp. 2106-2113
    • Chen, J.1    Bittinger, K.2    Charlson, E.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.