-
1
-
-
41649114164
-
Enabling personalized cancer medicine through analysis of gene-expression patterns
-
van’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008; 452: 564-70.
-
(2008)
Nature
, vol.452
, pp. 564-570
-
-
Van’T Veer, L.J.1
Bernards, R.2
-
2
-
-
15944363312
-
Classification of gene microarrays by penalized logistic regression
-
Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression. Biostatistics. 2004; 5 (3): 427-43.
-
(2004)
Biostatistics
, vol.5
, Issue.3
, pp. 427-443
-
-
Zhu, J.1
Hastie, T.2
-
3
-
-
0036740519
-
Multi-class cancer classification via partial least squares with gene expression profiles
-
Nguyen DV, Rocke DM. Multi-class cancer classification via partial least squares with gene expression profiles. Bioinformatics. 2002; 18 (9): 1216-26.
-
(2002)
Bioinformatics
, vol.18
, Issue.9
, pp. 1216-1226
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
4
-
-
33645057908
-
Multi-class cancer classification using multinomial probit regression with Bayesian gene selection
-
Zhou X, Wang X. Multi-class cancer classification using multinomial probit regression with Bayesian gene selection. Syst Biol. 2006; 153 (2): 70-8.
-
(2006)
Syst Biol
, vol.153
, Issue.2
, pp. 70-78
-
-
Zhou, X.1
Wang, X.2
-
5
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Daz-Uriarte R, Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006; 7: 3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Daz-Uriarte, R.1
Res, S.2
-
6
-
-
60849121073
-
Network-based support vector machine for classification of microarray samples
-
Zhu Y, Shen X, Pan W. Network-based support vector machine for classification of microarray samples. BMC Bioinformatics. 2009; 10: S21.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. S21
-
-
Zhu, Y.1
Shen, X.2
Pan, W.3
-
7
-
-
43049089414
-
The f∞-norm support vector machine
-
Zou H, Yuan M. The f∞-norm support vector machine. Stat Sin. 2008; 18: 379-98.
-
(2008)
Stat Sin
, vol.18
, pp. 379-398
-
-
Zou, H.1
Yuan, M.2
-
8
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey TS, Cristianini N. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000; 16 (10): 906-14.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
-
9
-
-
35348891430
-
Network-based classification of breast cancer metastasis
-
Chuang HY, Lee E. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007; 3: 140.
-
(2007)
Mol Syst Biol
, vol.3
, pp. 140
-
-
Chuang, H.Y.1
Lee, E.2
-
10
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002; 97 (457): 77-87.
-
(2002)
J am Stat Assoc
, vol.97
, Issue.457
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
11
-
-
0038729565
-
Classification of multiple cancer types by multicategory support vector machines using gene expression data
-
Lee Y, Lee CK. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics. 2003; 19 (9): 1132-9.
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1132-1139
-
-
Lee, Y.1
Lee, C.K.2
-
13
-
-
84862181484
-
Prognostic gene signatures for patient stratification in breast cancer: Accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions
-
Cun Y, Frhlich HF. Prognostic gene signatures for patient stratification in breast cancer: accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions. BMC Bioinformatics. 2012; 13: 69-81.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 69-81
-
-
Cun, Y.1
Frhlich, H.F.2
-
15
-
-
34547976903
-
Sparse multinomial logistic regression via Bayesian L1 regularisation
-
Cawley GC, Talbot NLC, Girolami M. Sparse multinomial logistic regression via Bayesian L1 regularisation. NIPS. 2007; 19: 209-16.
-
(2007)
NIPS
, vol.19
, pp. 209-216
-
-
Cawley, G.C.1
Talbot, N.2
Girolami, M.3
-
17
-
-
84879049361
-
Sparse logistic regression with a 11/2 penalty for gene selection in cancer classification
-
Liang Y, Liu C. Sparse logistic regression with a 11/2 penalty for gene selection in cancer classification. Bioinformatics. 2013; 14: 198.
-
(2013)
Bioinformatics
, vol.14
, pp. 198
-
-
Liang, Y.1
Liu, C.2
-
18
-
-
84889083914
-
Sparse group lasso and high dimensional multinomial classification
-
Vincent M, Hansen NR. Sparse group lasso and high dimensional multinomial classification. Comput Stat Data Anal. 2014; 71: 771-86.
-
(2014)
Comput Stat Data Anal
, vol.71
, pp. 771-786
-
-
Vincent, M.1
Hansen, N.R.2
-
19
-
-
37849035696
-
The group lasso for logistic regression
-
Meier L. The group lasso for logistic regression. J R Stat Soc Ser B Stat Methodol. 2008; 70 (1): 53-71.
-
(2008)
J R Stat Soc Ser B Stat Methodol
, vol.70
, Issue.1
, pp. 53-71
-
-
Meier, L.1
-
21
-
-
33947425580
-
Supervised group lasso with application to microarray data analysis
-
Ma S, Xiao S, Jian H. Supervised group lasso with application to microarray data analysis. BMC Bioinformatics. 2007; 8: 60-76.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 60-76
-
-
Ma, S.1
Xiao, S.2
Jian, H.3
-
22
-
-
80052846970
-
The sparse Laplacian shrinkage estimator for high-dimensional regression
-
Huang J, Ma S, Li H, Zhang CH. The sparse Laplacian shrinkage estimator for high-dimensional regression. Ann Stat. 2011; 39 (4): 2021-46.
-
(2011)
Ann Stat
, vol.39
, Issue.4
, pp. 2021-2046
-
-
Huang, J.1
Ma, S.2
Li, H.3
Zhang, C.H.4
-
23
-
-
23944458138
-
A general framework for weighted gene co-expression network analysis
-
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005; 4: 17.
-
(2005)
Stat Appl Genet Mol Biol
, vol.4
, pp. 17
-
-
Zhang, B.1
Horvath, S.2
-
24
-
-
84861843896
-
Identifying dysregulated pathways in cancers from pathway interaction networks
-
Liu K, Liu Z. Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics. 2012; 13: 126.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 126
-
-
Liu, K.1
Liu, Z.2
-
25
-
-
79952423666
-
Subnetwork state functions define dysregulated subnetworks in cancer
-
Chowdhury SA, Nibbe RK. Subnetwork state functions define dysregulated subnetworks in cancer. J Comp Biol. 2011; 18 (3): 263-81.
-
(2011)
J Comp Biol
, vol.18
, Issue.3
, pp. 263-281
-
-
Chowdhury, S.A.1
Nibbe, R.K.2
-
26
-
-
84858126071
-
MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review
-
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012; 4: 143-59.
-
(2012)
EMBO Mol Med
, vol.4
, pp. 143-159
-
-
Iorio, M.V.1
Croce, C.M.2
-
27
-
-
42649140560
-
Network-constrained regularization and variable selection for analysis of genomic data
-
Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics. 2008; 29 (9): 1175-82.
-
(2008)
Bioinformatics
, vol.29
, Issue.9
, pp. 1175-1182
-
-
Li, C.1
Li, H.2
-
28
-
-
84874848060
-
Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis
-
Chen J, Bushman FD, Lewis JD, Wu GD, Li H. Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics. 2013; 14: 244-58.
-
(2013)
Biostatistics
, vol.14
, pp. 244-258
-
-
Chen, J.1
Bushman, F.D.2
Lewis, J.D.3
Wu, G.D.4
Li, H.5
-
29
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2009; 2: 183-202.
-
(2009)
SIAM J Imaging Sci
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
30
-
-
70350593691
-
Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
-
Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process. 2009; 18: 2419-34.
-
(2009)
IEEE Trans Image Process
, vol.18
, pp. 2419-2434
-
-
Beck, A.1
Teboulle, M.2
-
31
-
-
84893167354
-
A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression
-
Liu Y, Gu Q. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression. BMC Bioinformatics. 2014; 15: 37.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 37
-
-
Liu, Y.1
Gu, Q.2
-
32
-
-
0034020459
-
Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice
-
Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000; 25: 55-7.
-
(2000)
Nat Genet
, vol.25
, pp. 55-57
-
-
Holland, E.C.1
Celestino, J.2
Dai, C.3
Schaefer, L.4
Sawaya, R.E.5
Fuller, G.N.6
-
33
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc. 2001; 96: 1348-60.
-
(2001)
J am Stat Assoc
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
34
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
Zhang CH. Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 2010; 38: 894-942.
-
(2010)
Ann Stat
, vol.38
, pp. 894-942
-
-
Zhang, C.H.1
-
35
-
-
85016683004
-
Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors
-
Breheny P, Huang J. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Stat Comput. 2013: 1-15.
-
(2013)
Stat Comput
, pp. 1-15
-
-
Breheny, P.1
Huang, J.2
-
36
-
-
84876058250
-
Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis
-
Chen J, Li H. Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis. Ann Appl Stat. 2013; 7: 418-42.
-
(2013)
Ann Appl Stat
, vol.7
, pp. 418-442
-
-
Chen, J.1
Li, H.2
-
37
-
-
84865082160
-
Associating microbiome composition with environmental covariates using generalized UniFrac distances
-
Chen J, Bittinger K, Charlson ES, et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012; 28: 2106-13.
-
(2012)
Bioinformatics
, vol.28
, pp. 2106-2113
-
-
Chen, J.1
Bittinger, K.2
Charlson, E.S.3
|