-
1
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc B Met 1996, 58:267-288. http://www.jstor.org/stable/2346178.
-
(1996)
J Roy Stat Soc B Met
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
2
-
-
0037076272
-
Diagnosis of multiple cancer types by shrunken centroids of gene expression
-
Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002, 99(10):6567-6572. http://dx.doi.org/10.1073/pnas.082099299.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, Issue.10
, pp. 6567-6572
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
3
-
-
0036161259
-
Gene Selection for Cancer Classification using Support Vector Machines
-
Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn 2002, 46:389-422. http://dx.doi.org/10.1023/A:1012487302797.
-
(2002)
Mach. Learn
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
4
-
-
0035478854
-
Random Forests
-
Breiman L. Random Forests. Mach Learn 2001, 45:5-32. http://dx.doi.org/10.1023/A:1010933404324.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
6
-
-
3543109140
-
A Feature Selection Newton Method for Support Vector Machine Classification
-
Fung G, Mangasarian O. A Feature Selection Newton Method for Support Vector Machine Classification. Comput Optim Appl 2004, 28:185-202. http://dx.doi.org/10.1023/B:COAP.0000026884.66338.df.
-
(2004)
Comput Optim Appl
, vol.28
, pp. 185-202
-
-
Fung, G.1
Mangasarian, O.2
-
7
-
-
30344438839
-
Gene selection using support vector machines with non-convex penalty
-
Zhang HH, Ahn J, Lin X, Park C. Gene selection using support vector machines with non-convex penalty. Bioinformatics 2006, 22:88-95. http://dx.doi.org/10.1093/bioinformatics/bti736.
-
(2006)
Bioinformatics
, vol.22
, pp. 88-95
-
-
Zhang, H.H.1
Ahn, J.2
Lin, X.3
Park, C.4
-
8
-
-
38849091390
-
Hybrid huberized support vector machines for microarray classification and gene selection
-
Wang L, Zhu J, Zou H. Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 2008, 24(3):412-419. http://dx.doi.org/10.1093/bioinformatics/btm579.
-
(2008)
Bioinformatics
, vol.24
, Issue.3
, pp. 412-419
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
9
-
-
13444282534
-
Outcome signature genes in breast cancer: is there a unique set?
-
Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set?. Bioinformatics 2005, 21(2):171-178. http://dx.doi.org/10.1093/bioinformatics/bth469.
-
(2005)
Bioinformatics
, vol.21
, Issue.2
, pp. 171-178
-
-
Ein-Dor, L.1
Kela, I.2
Getz, G.3
Givol, D.4
Domany, E.5
-
10
-
-
79952687473
-
Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?
-
Drier Y, Domany E. Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?. PLoS One 2011, 6(3):e17795. http://dx.doi.org/10.1371/journal.pone.0017795.
-
(2011)
PLoS One
, vol.6
, Issue.3
-
-
Drier, Y.1
Domany, E.2
-
11
-
-
35348891430
-
Network-based classification of breast cancer metastasis
-
Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140. http://dx.doi.org/10.1038/msb4100180.
-
(2007)
Mol Syst Biol
, vol.3
, pp. 140
-
-
Chuang, H.Y.1
Lee, E.2
Liu, Y.T.3
Lee, D.4
Ideker, T.5
-
12
-
-
33847162049
-
Classification of microarray data using gene networks
-
Rapaport F, Zinovyev A, Dutreix M, Barillot E, Vert JP. Classification of microarray data using gene networks. BMC Bioinformatics 2007, 8:35. http://dx.doi.org/10.1186/1471-2105-8-35.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 35
-
-
Rapaport, F.1
Zinovyev, A.2
Dutreix, M.3
Barillot, E.4
Vert, J.P.5
-
13
-
-
57149092133
-
Inferring pathway activity toward precise disease classification
-
Lee E, Chuang HY, Kim JW, Ideker T, Lee D. Inferring pathway activity toward precise disease classification. PLoS Comput Biol 2008, 4(11):e1000217. http://dx.doi.org/10.1371/journal.pcbi.1000217.
-
(2008)
PLoS Comput Biol
, vol.4
, Issue.11
-
-
Lee, E.1
Chuang, H.Y.2
Kim, J.W.3
Ideker, T.4
Lee, D.5
-
14
-
-
61449157892
-
Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
-
Binder H, Schumacher M. Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics 2009, 10:18. http://dx.doi.org/10.1186/1471-2105-10-18.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 18
-
-
Binder, H.1
Schumacher, M.2
-
15
-
-
60849121073
-
Network-based support vector machine for classification of microarray samples
-
Zhu Y, Shen X, Pan W. Network-based support vector machine for classification of microarray samples. BMC Bioinformatics 2009, 10(Suppl 1):S21. http://dx.doi.org/10.1186/1471-2105-10-S1-S21.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.SUPPL. 1
-
-
Zhu, Y.1
Shen, X.2
Pan, W.3
-
16
-
-
59849125136
-
Dynamic modularity in protein interaction networks predicts breast cancer outcome
-
Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 2009, 27(2):199-204. http://dx.doi.org/10.1038/nbt.1522.
-
(2009)
Nat Biotechnol
, vol.27
, Issue.2
, pp. 199-204
-
-
Taylor, I.W.1
Linding, R.2
Warde-Farley, D.3
Liu, Y.4
Pesquita, C.5
Faria, D.6
Bull, S.7
Pawson, T.8
Morris, Q.9
Wrana, J.L.10
-
17
-
-
77955886691
-
Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients
-
Johannes M, Brase JC, Fröhlich H, Gade S, Gehrmann M, Fälth M, Sültmann H, Beissbarth T. Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics 2010, 26(17):2136-2144. http://dx.doi.org/10.1093/bioinformatics/btq345.
-
(2010)
Bioinformatics
, vol.26
, Issue.17
, pp. 2136-2144
-
-
Johannes, M.1
Brase, J.C.2
Fröhlich, H.3
Gade, S.4
Gehrmann, M.5
Fälth, M.6
Sültmann, H.7
Beissbarth, T.8
-
18
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res 2003, 3:1157-1182. http://portal.acm.org/citation.cfm?id=944919.944968.
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
19
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 1994, 5(4):537-550. http://dx.doi.org/10.1109/72.298224.
-
(1994)
IEEE Trans Neural Netw
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
20
-
-
0035942271
-
Significance analysis of microarrays applied to the ionizing radiation response
-
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121. http://dx.doi.org/10.1073/pnas.091062498.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.9
, pp. 5116-5121
-
-
Tusher, V.G.1
Tibshirani, R.2
Chu, G.3
-
21
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Ros Stat Soc B Met 1995, 57:289-300. http://www.jstor.org/stable/2346101.
-
(1995)
J Ros Stat Soc B Met
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
22
-
-
25444456388
-
Towards precise classification of cancers based on robust gene functional expression profiles
-
Guo Z, Zhang T, Li X, Wang Q, Xu J, Yu H, Zhu J, Wang H, Wang C, Topol EJ, Wang Q, Rao S. Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics 2005, 6:58. http://dx.doi.org/10.1186/1471-2105-6-58.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 58
-
-
Guo, Z.1
Zhang, T.2
Li, X.3
Wang, Q.4
Xu, J.5
Yu, H.6
Zhu, J.7
Wang, H.8
Wang, C.9
Topol, E.J.10
Wang, Q.11
Rao, S.12
-
23
-
-
70449408962
-
Graph ranking for exploratory gene data analysis
-
Gao C, Dang X, Chen Y, Wilkins D. Graph ranking for exploratory gene data analysis. BMC Bioinformatics 2009, 10(Suppl 11):S19. http://dx.doi.org/10.1186/1471-2105-10-S11-S19.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.SUPPL. 11
-
-
Gao, C.1
Dang, X.2
Chen, Y.3
Wilkins, D.4
-
24
-
-
79955757477
-
PathClass: an R-package for integration of pathway knowledge into support vector machines for biomarker discovery
-
Johannes M, Fröhlich H, Sültmann H, Beissbarth T. pathClass: an R-package for integration of pathway knowledge into support vector machines for biomarker discovery. Bioinformatics 2011, 27(10):1442-1443. http://dx.doi.org/10.1093/bioinformatics/btr157.
-
(2011)
Bioinformatics
, vol.27
, Issue.10
, pp. 1442-1443
-
-
Johannes, M.1
Fröhlich, H.2
Sültmann, H.3
Beissbarth, T.4
-
25
-
-
27644503675
-
GeneRank: using search engine technology for the analysis of microarray experiments
-
Morrison JL, Breitling R, Higham DJ, Gilbert DR. GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 2005, 6:233. http://dx.doi.org/10.1186/1471-2105-6-233.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 233
-
-
Morrison, J.L.1
Breitling, R.2
Higham, D.J.3
Gilbert, D.R.4
-
26
-
-
0036161011
-
Choosing Multiple Parameters for Support Vector Machines
-
Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing Multiple Parameters for Support Vector Machines. Mach Learn 2002, 46:131-159. http://dx.doi.org/10.1023/A:1012450327387.
-
(2002)
Mach Learn
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
27
-
-
67649214465
-
PenalizedSVM: a R-package for feature selection SVM classification
-
Becker N, Werft W, Toedt G, Lichter P, Benner A. penalizedSVM: a R-package for feature selection SVM classification. Bioinformatics 2009, 25(13):1711-1712. http://dx.doi.org/10.1093/bioinformatics/btp286.
-
(2009)
Bioinformatics
, vol.25
, Issue.13
, pp. 1711-1712
-
-
Becker, N.1
Werft, W.2
Toedt, G.3
Lichter, P.4
Benner, A.5
-
28
-
-
33750124478
-
Efficient Parameter Selection for Support Vector Machines in Classification and Regression via Model-Based Global Optimization
-
Fröhlich H, Zell A. Efficient Parameter Selection for Support Vector Machines in Classification and Regression via Model-Based Global Optimization. In Proc. Int. Joint Conf. Neural Networks 2005, 1431-1438.
-
(2005)
In Proc. Int. Joint Conf. Neural Networks
, pp. 1431-1438
-
-
Fröhlich, H.1
Zell, A.2
-
29
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 2006, 27(8):861-874. http://www.sciencedirect.com/science/article/pii/S0167865505 00303X.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
30
-
-
27544491192
-
ROCR: visualizing classifier performance in R
-
Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21(20):3940-3941. http://dx.doi.org/10.1093/bioinformatics/bti623.
-
(2005)
Bioinformatics
, vol.21
, Issue.20
, pp. 3940-3941
-
-
Sing, T.1
Sander, O.2
Beerenwinkel, N.3
Lengauer, T.4
-
31
-
-
66349110163
-
Annotating the human genome with disease ontology
-
Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, Danila MI, Feng G, Chisholm RL. Annotating the human genome with disease ontology. BMC Genomics 2009, 10(Suppl 1):S6. http://dx.doi.org/10.1186/1471-2164-10-S1-S6.
-
(2009)
BMC Genomics
, vol.10
, Issue.SUPPL. 1
-
-
Osborne, J.D.1
Flatow, J.2
Holko, M.3
Lin, S.M.4
Kibbe, W.A.5
Zhu, L.J.6
Danila, M.I.7
Feng, G.8
Chisholm, R.L.9
-
32
-
-
0028931857
-
Multiple significance tests: the Bonferroni method
-
Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BMJ 1995, 310(6973):170.
-
(1995)
BMJ
, vol.310
, Issue.6973
, pp. 170
-
-
Bland, J.M.1
Altman, D.G.2
-
33
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 2000, 29:1165-1188.
-
(2000)
Annals of Statistics
, vol.29
, pp. 1165-1188
-
-
Benjamini, Y.1
Yekutieli, D.2
-
34
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005, 365(9460):671-679. http://dx.doi.org/10.1016/S0140-6736(05)17947-1.
-
(2005)
Lancet
, vol.365
, Issue.9460
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.2
Zhang, Y.3
Sieuwerts, A.M.4
Look, M.P.5
Yang, F.6
Talantov, D.7
Timmermans, M.8
Meijer-van Gelder, M.E.9
Yu, J.10
Jatkoe, T.11
Berns, E.M.12
Atkins, D.13
Foekens, J.A.14
-
35
-
-
34447632167
-
Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts
-
Pawitan Y, Bjöhle J, Amler L, Borg AL, Egyhazi S, Hall P, Han X, Holmberg L, Huang F, Klaar S, Liu ET, Miller L, Nordgren H, Ploner A, Sandelin K, Shaw PM, Smeds J, Skoog L, Wedrén S, Bergh J. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005, 7(6):R953-R964. http://dx.doi.org/10.1186/bcr1325.
-
(2005)
Breast Cancer Res
, vol.7
, Issue.6
-
-
Pawitan, Y.1
Bjöhle, J.2
Amler, L.3
Borg, A.L.4
Egyhazi, S.5
Hall, P.6
Han, X.7
Holmberg, L.8
Huang, F.9
Klaar, S.10
Liu, E.T.11
Miller, L.12
Nordgren, H.13
Ploner, A.14
Sandelin, K.15
Shaw, P.M.16
Smeds, J.17
Skoog, L.18
Wedrén, S.19
Bergh, J.20
more..
-
36
-
-
33144462268
-
Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis
-
Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, Van de Vijver MJ, Bergh J, Piccart M, Delorenzi M. Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis. J Natl Cancer Inst 2006, 98(4):262-272. http://jnci.oxfordjournals.org/content/98/4/262.abstract.
-
(2006)
J Natl Cancer Inst
, vol.98
, Issue.4
, pp. 262-272
-
-
Sotiriou, C.1
Wirapati, P.2
Loi, S.3
Harris, A.4
Fox, S.5
Smeds, J.6
Nordgren, H.7
Farmer, P.8
Praz, V.9
Haibe-Kains, B.10
Desmedt, C.11
Larsimont, D.12
Cardoso, F.13
Peterse, H.14
Nuyten, D.15
Buyse, M.16
Van de Vijver, M.J.17
Bergh, J.18
Piccart, M.19
Delorenzi, M.20
more..
-
37
-
-
33751261643
-
Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer
-
Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H, Wong JEL, Liu ET, Bergh J, Kuznetsov VA, Miller LD. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 2006, 66(21):10292-10301. http://dx.doi.org/10.1158/0008-5472.CAN-05-4414.
-
(2006)
Cancer Res
, vol.66
, Issue.21
, pp. 10292-10301
-
-
Ivshina, A.V.1
George, J.2
Senko, O.3
Mow, B.4
Putti, T.C.5
Smeds, J.6
Lindahl, T.7
Pawitan, Y.8
Hall, P.9
Nordgren, H.10
Wong, J.E.L.11
Liu, E.T.12
Bergh, J.13
Kuznetsov, V.A.14
Miller, L.D.15
-
38
-
-
34250652449
-
Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series
-
Consortium TRANSBIG
-
Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, D'Assignies D'Assignies D'Assignies D'Assignies D'Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JGM, Foekens JA, Cardoso F, Piccart MJ, Buyse M, Sotiriou C, . Consortium TRANSBIG Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007, 13(11):3207-3214. Consortium TRANSBIG.
-
(2007)
Clin Cancer Res
, vol.13
, Issue.11
, pp. 3207-3214
-
-
Desmedt, C.1
Piette, F.2
Loi, S.3
Wang, Y.4
Lallemand, F.5
Haibe-Kains, B.6
Viale, G.7
Delorenzi, M.8
Zhang, Y.9
D'Assignies D'Assignies D'Assignies D'Assignies D'Assignies, M.S.10
Bergh, J.11
Lidereau, R.12
Ellis, P.13
Harris, A.L.14
Klijn, J.G.M.15
Foekens, J.A.16
Cardoso, F.17
Piccart, M.J.18
Buyse, M.19
Sotiriou, C.20
more..
-
39
-
-
44849101184
-
The humoral immune system has a key prognostic impact in node-negative breast cancer
-
Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H, Lehr HA, Hengstler JG, Kölbl H, Gehrmann M. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 2008, 68(13):5405-5413. http://dx.doi.org/10.1158/0008-5472.CAN-07-5206.
-
(2008)
Cancer Res
, vol.68
, Issue.13
, pp. 5405-5413
-
-
Schmidt, M.1
Böhm, D.2
von Törne, C.3
Steiner, E.4
Puhl, A.5
Pilch, H.6
Lehr, H.A.7
Hengstler, J.G.8
Kölbl, H.9
Gehrmann, M.10
-
40
-
-
78651339534
-
NCBI GEO: archive for functional genomics data sets-10 years on
-
Database issue
-
Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A. NCBI GEO: archive for functional genomics data sets-10 years on. Nucleic Acids Res 2011, 39(Database issue):D1005-D1010. http://dx.doi.org/10.1093/nar/gkq1184.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Barrett, T.1
Troup, D.B.2
Wilhite, S.E.3
Ledoux, P.4
Evangelista, C.5
Kim, I.F.6
Tomashevsky, M.7
Marshall, K.A.8
Phillippy, K.H.9
Sherman, P.M.10
Muertter, R.N.11
Holko, M.12
Ayanbule, O.13
Yefanov, A.14
Soboleva, A.15
-
41
-
-
33645823677
-
A new summarization method for Affymetrix probe level data
-
Hochreiter S, Clevert DA, Obermayer K. A new summarization method for Affymetrix probe level data. Bioinformatics 2006, 22(8):943-949. http://dx.doi.org/10.1093/bioinformatics/btl033.
-
(2006)
Bioinformatics
, vol.22
, Issue.8
, pp. 943-949
-
-
Hochreiter, S.1
Clevert, D.A.2
Obermayer, K.3
-
42
-
-
38549126643
-
KEGG for linking genomes to life and the environment
-
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36:D480-D484. http://dx.doi.org/10.1093/nar/gkm882.
-
(2008)
Nucleic Acids Res
, vol.36
-
-
Kanehisa, M.1
Araki, M.2
Goto, S.3
Hattori, M.4
Hirakawa, M.5
Itoh, M.6
Katayama, T.7
Kawashima, S.8
Okuda, S.9
Tokimatsu, T.10
Yamanishi, Y.11
-
43
-
-
78651332286
-
Pathway Commons, a web resource for biological pathway data
-
Database issue
-
Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 2011, 39(Database issue):D685-D690. http://dx.doi.org/10.1093/nar/gkq1039.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Cerami, E.G.1
Gross, B.E.2
Demir, E.3
Rodchenkov, I.4
Babur, O.5
Anwar, N.6
Schultz, N.7
Bader, G.D.8
Sander, C.9
-
44
-
-
65649116900
-
KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor
-
Zhang JD, Wiemann S. KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 2009, 25(11):1470-1471. http://dx.doi.org/10.1093/bioinformatics/btp167.
-
(2009)
Bioinformatics
, vol.25
, Issue.11
, pp. 1470-1471
-
-
Zhang, J.D.1
Wiemann, S.2
-
45
-
-
84865975985
-
Affymetrix Human Genome U133 Set annotation data (chip hgu133a) assembled using data from public repositories
-
Carlson M, Falcon S, Pages H, Li N. Affymetrix Human Genome U133 Set annotation data (chip hgu133a) assembled using data from public repositories. Bioconductor version 2009, 2(2):12.
-
(2009)
Bioconductor version
, vol.2
, Issue.2
, pp. 12
-
-
Carlson, M.1
Falcon, S.2
Pages, H.3
Li, N.4
-
46
-
-
0141757460
-
MAPK pathways in radiation responses
-
Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation responses. Oncogene 2003, 22(37):5885-5896. http://dx.doi.org/10.1038/sj.onc.1206701.
-
(2003)
Oncogene
, vol.22
, Issue.37
, pp. 5885-5896
-
-
Dent, P.1
Yacoub, A.2
Fisher, P.B.3
Hagan, M.P.4
Grant, S.5
-
47
-
-
0034600849
-
The ErbB signaling network: receptor heterodimerization in development and cancer
-
Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000, 19(13):3159-3167. http://dx.doi.org/10.1093/emboj/19.13.3159.
-
(2000)
EMBO J
, vol.19
, Issue.13
, pp. 3159-3167
-
-
Olayioye, M.A.1
Neve, R.M.2
Lane, H.A.3
Hynes, N.E.4
-
48
-
-
0032792155
-
The cadherin-catenin system: implications for growth and differentiation of endocrine tissues
-
Pötter E, Bergwitz C, Brabant G. The cadherin-catenin system: implications for growth and differentiation of endocrine tissues. Endocr Rev 1999, 20(2):207-239.
-
(1999)
Endocr Rev
, vol.20
, Issue.2
, pp. 207-239
-
-
Pötter, E.1
Bergwitz, C.2
Brabant, G.3
-
49
-
-
0034494961
-
Focal adhesions: structure and dynamics
-
Petit V, Thiery JP. Focal adhesions: structure and dynamics. Biol Cell 2000, 92(7):477-494.
-
(2000)
Biol Cell
, vol.92
, Issue.7
, pp. 477-494
-
-
Petit, V.1
Thiery, J.P.2
-
50
-
-
77952961276
-
Network properties of human disease genes with pleiotropic effects
-
Chavali S, Barrenas F, Kanduri K, Benson M. Network properties of human disease genes with pleiotropic effects. BMC Syst Biol 2010, 4:78. http://dx.doi.org/10.1186/1752-0509-4-78.
-
(2010)
BMC Syst Biol
, vol.4
, pp. 78
-
-
Chavali, S.1
Barrenas, F.2
Kanduri, K.3
Benson, M.4
-
51
-
-
83755163963
-
The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures
-
Haury AC, Gestraud P, Vert JP. The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures. PLoS One 2011, 6(12):28210.
-
(2011)
PLoS One
, vol.6
, Issue.12
, pp. 28210
-
-
Haury, A.C.1
Gestraud, P.2
Vert, J.P.3
-
52
-
-
79955683050
-
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data
-
Becker N, Toedt G, Lichter P, Benner A. Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data. 2011, 12:138. http://dx.doi.org/10.1186/1471-2105-12-138.
-
(2011)
, vol.12
, pp. 138
-
-
Becker, N.1
Toedt, G.2
Lichter, P.3
Benner, A.4
|