메뉴 건너뛰기




Volumn 2, Issue , 2013, Pages 165-202

Flavoprotein disulfide reductases and structurally related flavoprotein thiol/disulfi de-linked oxidoreductases

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84979150487     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1515/9783110298345.165     Document Type: Chapter
Times cited : (7)

References (94)
  • 1
    • 10644295071 scopus 로고    scopus 로고
    • Flavoprotein disulfide reductases: Advances in chemistry and function
    • Argyrou A, Blanchard JS. Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol 2004;78:89-142.
    • (2004) Prog Nucleic Acid Res Mol Biol , vol.78 , pp. 89-142
    • Argyrou, A.1    Blanchard, J.S.2
  • 2
    • 0000876731 scopus 로고
    • Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase—a family of flavoenzyme transhydrogenases
    • Muller F, ed., Boca Raton: CRC Press
    • Williams CH, Jr. Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase—a family of flavoenzyme transhydrogenases. In: Muller F, ed. Chemistry and Biochemistry of Flavoenzymes. Boca Raton: CRC Press; 1992:121-211.
    • (1992) Chemistry and Biochemistry of Flavoenzymes , pp. 121-211
    • Williams, C.H.1
  • 3
    • 77956936983 scopus 로고
    • Flavin-containing dehydrogenases
    • Boyer PD, ed., New York: Academic Press
    • Williams CH, Jr. Flavin-containing dehydrogenases. In: Boyer PD, ed. The Enzymes. New York: Academic Press; 1976:89-173.
    • (1976) The Enzymes , pp. 89-173
    • Williams, C.H.1
  • 4
    • 0034682854 scopus 로고    scopus 로고
    • Twists in catalysis: Alternating conformations of Escherichia coli thioredoxin reductase
    • Lennon BW, Williams CH, Jr., Ludwig ML. Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science 2000;289:1190-4.
    • (2000) Science , vol.289 , pp. 1190-1194
    • Lennon, B.W.1    Williams, C.H.2    Ludwig, M.L.3
  • 7
    • 0032544194 scopus 로고    scopus 로고
    • Rapid reduction of Hg(II) by mercuric ion reductase does not require the conserved C-terminal cysteine pair using HgBr2 as the substrate
    • 2 as the substrate. Biochemistry 1998;37:11496-507.
    • (1998) Biochemistry , vol.37 , pp. 11496-11507
    • Engst, S.1    Miller, S.M.2
  • 8
    • 0033547794 scopus 로고    scopus 로고
    • Rapid reduction of Hg(II) by mercuric ion reductase does not require the conserved C-terminal cysteine pair using HgBr2 as the substrate
    • 2 as the substrate. Biochemistry 1999;38:853-4.
    • (1999) Biochemistry , vol.38 , pp. 853-854
    • Engst, S.1    Miller, S.M.2
  • 9
    • 0023040106 scopus 로고
    • Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH
    • Sahlman L, Lambeir AM, Lindskog S. Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH. Eur J of Biochem/FEBS 1986;156:479-88.
    • (1986) Eur J of Biochem/Febs , vol.156 , pp. 479-488
    • Sahlman, L.1    Lambeir, A.M.2    Lindskog, S.3
  • 10
    • 0019883230 scopus 로고
    • Lipoamide dehydrogenase from pig heart. Pyridine nucleotide induced changes in monoalkylated two-electron reduced enzyme
    • Thorpe C, Williams CH, Jr. Lipoamide dehydrogenase from pig heart. Pyridine nucleotide induced changes in monoalkylated two-electron reduced enzyme. Biochemistry 1981;20: 1507-13.
    • (1981) Biochemistry , vol.20 , pp. 1507-1513
    • Thorpe, C.1    Williams, C.H.2
  • 11
    • 0025363920 scopus 로고
    • Use of a site-directed triple mutant to trap intermediates: Demonstration that the flavin C(4a)-thiol adduct and reduced flavin are kinetically competent intermediates in mercuric ion reductase
    • Miller SM, Massey V, Ballou D, Williams CH, Jr, Distefano MD, Moore MJ, Walsh CT. Use of a site-directed triple mutant to trap intermediates: demonstration that the flavin C(4a)-thiol adduct and reduced flavin are kinetically competent intermediates in mercuric ion reductase. Biochemistry 1990;29:2831-41.
    • (1990) Biochemistry , vol.29 , pp. 2831-2841
    • Miller, S.M.1    Massey, V.2    Ballou, D.3    Williams, C.H.4    Distefano, M.D.5    Moore, M.J.6    Walsh, C.T.7
  • 12
    • 0033596895 scopus 로고    scopus 로고
    • Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands
    • 2 into the active site of mercuric ion reductase depend on the nature of the X ligands. Biochemistry 1999;38:3519-29.
    • (1999) Biochemistry , vol.38 , pp. 3519-3529
    • Engst, S.1    Miller, S.M.2
  • 13
    • 0017067595 scopus 로고
    • Differential reactivity of the two active site cysteine residues generated on reduction of pig heart lipoamide dehydrogenase
    • Thorpe C, Williams CH, Jr. Differential reactivity of the two active site cysteine residues generated on reduction of pig heart lipoamide dehydrogenase. J Biol Chem 1976;251:3553-7.
    • (1976) J Biol Chem , vol.251 , pp. 3553-3557
    • Thorpe, C.1    Williams, C.H.2
  • 14
    • 2642644904 scopus 로고
    • Multienzyme complexes
    • Reed LJ. Multienzyme complexes. Acc Chem Res 1974;7:40-6.
    • (1974) Acc Chem Res , vol.7 , pp. 40-46
    • Reed, L.J.1
  • 15
    • 20444475852 scopus 로고    scopus 로고
    • Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations
    • Brautigam CA, Chuang JL, Tomchick DR, Machius M, Chuang DT. Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations. J Mol Biol 2005;350:543-52.
    • (2005) J Mol Biol , vol.350 , pp. 543-552
    • Brautigam, C.A.1    Chuang, J.L.2    Tomchick, D.R.3    Machius, M.4    Chuang, D.T.5
  • 16
    • 33644842641 scopus 로고    scopus 로고
    • Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex
    • Brautigam CA, Wynn RM, Chuang JL, Machius M, Tomchick DR, Chuang DT. Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex. Structure 2006;14:611-21.
    • (2006) Structure , vol.14 , pp. 611-621
    • Brautigam, C.A.1    Wynn, R.M.2    Chuang, J.L.3    Machius, M.4    Tomchick, D.R.5    Chuang, D.T.6
  • 17
    • 79959537557 scopus 로고    scopus 로고
    • Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex
    • Brautigam CA, Wynn RM, Chuang JL, Naik MT, Young BB, Huang TH, Chuang DT. Structural and thermodynamic basis for weak interactions between dihydrolipoamide dehydrogenase and subunit-binding domain of the branched-chain alpha-ketoacid dehydrogenase complex. J Biol Chem 2011;286:23476-88.
    • (2011) J Biol Chem , vol.286 , pp. 23476-23488
    • Brautigam, C.A.1    Wynn, R.M.2    Chuang, J.L.3    Naik, M.T.4    Young, B.B.5    Huang, T.H.6    Chuang, D.T.7
  • 18
    • 0037039818 scopus 로고    scopus 로고
    • Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin- like protein
    • Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin- like protein. Science 2002;295:1073-7.
    • (2002) Science , vol.295 , pp. 1073-1077
    • Bryk, R.1    Lima, C.D.2    Erdjument-Bromage, H.3    Tempst, P.4    Nathan, C.5
  • 19
    • 26644432063 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis
    • Rajashankar KR, Bryk R, Kniewel R, Buglino JA, Nathan CF, Lima CD. Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis. J Biol Chem 2005;280:33977-83.
    • (2005) J Biol Chem , vol.280 , pp. 33977-33983
    • Rajashankar, K.R.1    Bryk, R.2    Kniewel, R.3    Buglino, J.A.4    Nathan, C.F.5    Lima, C.D.6
  • 21
    • 77954590069 scopus 로고    scopus 로고
    • Ohr (Organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase
    • Cussiol JR, Alegria TG, Szweda LI, Netto LE. Ohr (organic hydroperoxide resistance protein) possesses a previously undescribed activity, lipoyl-dependent peroxidase. J Biol Chem 2010;285:21943-50.
    • (2010) J Biol Chem , vol.285 , pp. 21943-21950
    • Cussiol, J.R.1    Alegria, T.G.2    Szweda, L.I.3    Netto, L.E.4
  • 22
    • 50049107805 scopus 로고    scopus 로고
    • Catalytic cycle of human glutathione reductase near 1 Ä resolution
    • Berkholz DS, Faber HR, Savvides SN, Karplus PA. Catalytic cycle of human glutathione reductase near 1 Ä resolution. J Mol Biol 2008;382:371-84.
    • (2008) J Mol Biol , vol.382 , pp. 371-384
    • Berkholz, D.S.1    Faber, H.R.2    Savvides, S.N.3    Karplus, P.A.4
  • 23
    • 35748967556 scopus 로고    scopus 로고
    • Understanding nicotinamide dinucleotide cofactor and substrate specificity in class I flavoprotein disulfide oxidoreductases: Crystallographic analysis of a glutathione amide reductase
    • Van Petegem F, De Vos D, Savvides S, Vergauwen B, Van Beeumen J. Understanding nicotinamide dinucleotide cofactor and substrate specificity in class I flavoprotein disulfide oxidoreductases: crystallographic analysis of a glutathione amide reductase. J Mol Biol 2007;374:883-9.
    • (2007) J Mol Biol , vol.374 , pp. 883-889
    • Van Petegem, F.1    De Vos, D.2    Savvides, S.3    Vergauwen, B.4    Van Beeumen, J.5
  • 24
    • 0029780682 scopus 로고    scopus 로고
    • Glutathione amide and its perthiol in anaerobic sulfur bacteria
    • Bartsch RG, Newton GL, Sherrill C, Fahey RC. Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 1996;178:4742-6.
    • (1996) J Bacteriol , vol.178 , pp. 4742-4746
    • Bartsch, R.G.1    Newton, G.L.2    Sherrill, C.3    Fahey, R.C.4
  • 25
    • 0031855745 scopus 로고    scopus 로고
    • Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosumare involved in the oxidation of intracellular sulfur
    • Pott AS, Dahl C. Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosumare involved in the oxidation of intracellular sulfur. Microbiology 1998;144(Pt 7):1881-94.
    • (1998) Microbiology , vol.144 , pp. 1881-1894
    • Pott, A.S.1    Dahl, C.2
  • 26
    • 0035877729 scopus 로고    scopus 로고
    • Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling
    • Vergauwen B, Pauwels F, Jacquemotte F, Meyer TE, Cusanovich MA, Bartsch RG, Van Beeumen JJ. Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J Biol Chem 2001;276:20890-7.
    • (2001) J Biol Chem , vol.276 , pp. 20890-20897
    • Vergauwen, B.1    Pauwels, F.2    Jacquemotte, F.3    Meyer, T.E.4    Cusanovich, M.A.5    Bartsch, R.G.6    Van Beeumen, J.J.7
  • 27
    • 0025019734 scopus 로고
    • Redesign of the coenzyme specificity of a dehydrogenase by protein engineering
    • Scrutton NS, Berry A, Perham RN. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 1990;343:38-43.
    • (1990) Nature , vol.343 , pp. 38-43
    • Scrutton, N.S.1    Berry, A.2    Perham, R.N.3
  • 28
  • 29
    • 0035865881 scopus 로고    scopus 로고
    • Davioud-Charvet E. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: Synthesis and correlation between redox cycling activities and in vitro cytotoxicity
    • Salmon-Chemin L, Buisine E, Yardley V, Kohler S, Debreu MA, Landry V, Sergheraert C, Croft SL, Krauth-Siegel RL, Davioud-Charvet E. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J Med Chem 2001;44:548-65.
    • (2001) J Med Chem , vol.44 , pp. 548-565
    • Salmon-Chemin, L.1    Buisine, E.2    Yardley, V.3    Kohler, S.4    Debreu, M.A.5    Landry, V.6    Sergheraert, C.7    Croft, S.L.8    Krauth-Siegel, R.L.9
  • 31
    • 0027990965 scopus 로고
    • Thiols of intracellular pathogens. Identification of ovothiol A in
    • Spies HS, Steenkamp DJ. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem/FEBS 1994;224:203-13.
    • (1994) Eur J Biochem/Febs , vol.224 , pp. 203-213
    • Spies, H.S.1    Steenkamp, D.J.2
  • 32
    • 0038240633 scopus 로고    scopus 로고
    • Bacterial mercury resistance from atoms to ecosystems
    • Barkay T, Miller SM, Summers AO. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 2003;27:355-84.
    • (2003) FEMS Microbiol Rev , vol.27 , pp. 355-384
    • Barkay, T.1    Miller, S.M.2    Summers, A.O.3
  • 33
    • 78249274906 scopus 로고    scopus 로고
    • A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase
    • Barkay T, Kritee K, Boyd E, Geesey G. A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol 2010;12:2904-17.
    • (2010) Environ Microbiol , vol.12 , pp. 2904-2917
    • Barkay, T.1    Kritee, K.2    Boyd, E.3    Geesey, G.4
  • 34
    • 77956565971 scopus 로고    scopus 로고
    • Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved gam-ma-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione
    • Hong B, Nauss R, Harwood IM, Miller SM. Direct measurement of mercury(II) removal from organomercurial lyase (MerB) by tryptophan fluorescence: NmerA domain of coevolved gam-ma-proteobacterial mercuric ion reductase (MerA) is more efficient than MerA catalytic core or glutathione. Biochemistry 2010;49:8187-96.
    • (2010) Biochemistry , vol.49 , pp. 8187-8196
    • Hong, B.1    Nauss, R.2    Harwood, I.M.3    Miller, S.M.4
  • 35
    • 80054695834 scopus 로고    scopus 로고
    • Structural characterization of intramolecular Hg(2+) transfer between flexibly linked domains of mercuric ion reductase
    • Johs A, Harwood IM, Parks JM, Nauss RE, Smith JC, Liang L, Miller SM. Structural characterization of intramolecular Hg(2+) transfer between flexibly linked domains of mercuric ion reductase. J Mol Biol 2011;413:639-56.
    • (2011) J Mol Biol , vol.413 , pp. 639-656
    • Johs, A.1    Harwood, I.M.2    Parks, J.M.3    Nauss, R.E.4    Smith, J.C.5    Liang, L.6    Miller, S.M.7
  • 36
    • 77957927380 scopus 로고    scopus 로고
    • NmerA of Tn507 mercuric ion reductase: Structural modulation of the pKa values of the metal binding cysteine thiols
    • Ledwidge R, Hong B, Dotsch V, Miller SM. NmerA of Tn507 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols. Biochemistry 2010;49:8988-98.
    • (2010) Biochemistry , vol.49 , pp. 8988-8998
    • Ledwidge, R.1    Hong, B.2    Dotsch, V.3    Miller, S.M.4
  • 38
    • 23744482969 scopus 로고    scopus 로고
    • Direct monitoring of metal ion transfer between two trafficking proteins
    • Ledwidge R, Soinski R, Miller SM. Direct monitoring of metal ion transfer between two trafficking proteins. J Am Chem Soc 2005;127:10842-3.
    • (2005) J am Chem Soc , vol.127 , pp. 10842-10843
    • Ledwidge, R.1    Soinski, R.2    Miller, S.M.3
  • 39
    • 0025882946 scopus 로고
    • Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. Strain RC607
    • Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 1991;352:168-72.
    • (1991) Nature , vol.352 , pp. 168-172
    • Schiering, N.1    Kabsch, W.2    Moore, M.J.3    Distefano, M.D.4    Walsh, C.T.5    Pai, E.F.6
  • 40
    • 77952311188 scopus 로고    scopus 로고
    • Thioredoxin and thioredoxin reductase: Current research with special reference to human disease
    • Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 2010;396:120-4.
    • (2010) Biochem Biophys Res Commun , vol.396 , pp. 120-124
    • Holmgren, A.1    Lu, J.2
  • 41
    • 0036094506 scopus 로고    scopus 로고
    • How selenium has altered our understanding of the genetic code
    • Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Mol Cell Biol 2002;22:3565-76.
    • (2002) Mol Cell Biol , vol.22 , pp. 3565-3576
    • Hatfield, D.L.1    Gladyshev, V.N.2
  • 42
    • 67349120863 scopus 로고    scopus 로고
    • Focus on mammalian thioredoxin reductases—important selenoproteins with versatile functions
    • Arner ES. Focus on mammalian thioredoxin reductases—important selenoproteins with versatile functions. Biochim Biophys Acta 2009;1790:495-526.
    • (2009) Biochim Biophys Acta , vol.1790 , pp. 495-526
    • Arner, E.S.1
  • 43
    • 27244458231 scopus 로고    scopus 로고
    • Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism
    • Biterova EI, Turanov AA, Gladyshev VN, Barycki JJ. Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Proc Natl Acad Sci USA 2005;102:15018-23.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 15018-15023
    • Biterova, E.I.1    Turanov, A.A.2    Gladyshev, V.N.3    Barycki, J.J.4
  • 44
    • 79960322216 scopus 로고    scopus 로고
    • Crystal structure of the human thioredoxin reductase-thioredoxin complex
    • Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun 2011;2:383.
    • (2011) Nat Commun , vol.2 , pp. 383
    • Fritz-Wolf, K.1    Kehr, S.2    Stumpf, M.3    Rahlfs, S.4    Becker, K.5
  • 45
    • 34249330693 scopus 로고    scopus 로고
    • The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis
    • Fritz-Wolf K, Urig S, Becker K. The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J Mol Biol 2007;370:116-27.
    • (2007) J Mol Biol , vol.370 , pp. 116-127
    • Fritz-Wolf, K.1    Urig, S.2    Becker, K.3
  • 46
    • 63649115838 scopus 로고    scopus 로고
    • Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1
    • Cheng Q, Sandalova T, Lindqvist Y, Arner ES. Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J Biol Chem 2009;284:3998-4008.
    • (2009) J Biol Chem , vol.284 , pp. 3998-4008
    • Cheng, Q.1    Sandalova, T.2    Lindqvist, Y.3    Arner, E.S.4
  • 48
    • 47349121027 scopus 로고    scopus 로고
    • Glutathione reductase and thioredoxin reductase at the crossroad: The structure of Schistosoma mansoni thioredoxin glutathione reductase
    • Angelucci F, Miele AE, Boumis G, Dimastrogiovanni D, Brunori M, Bellelli A. Glutathione reductase and thioredoxin reductase at the crossroad: the structure of Schistosoma mansoni thioredoxin glutathione reductase. Proteins 2008;72:936-45.
    • (2008) Proteins , vol.72 , pp. 936-945
    • Angelucci, F.1    Miele, A.E.2    Boumis, G.3    Dimastrogiovanni, D.4    Brunori, M.5    Bellelli, A.6
  • 50
    • 0028220312 scopus 로고
    • Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis
    • Waksman G, Krishna TS, Williams CH, Jr., Kuriyan J. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. J Mol Biol 1994;236:800-16.
    • (1994) J Mol Biol , vol.236 , pp. 800-816
    • Waksman, G.1    Krishna, T.S.2    Williams, C.H.3    Kuriyan, J.4
  • 51
    • 0032725979 scopus 로고    scopus 로고
    • Crystal structure of reduced thioredoxin reductase from Escherichia coli: Structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor
    • Lennon BW, Williams CH, Jr., Ludwig ML. Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Prot Sci 1999;8:2366-79.
    • (1999) Prot Sci , vol.8 , pp. 2366-2379
    • Lennon, B.W.1    Williams, C.H.2    Ludwig, M.L.3
  • 53
    • 0025168850 scopus 로고
    • Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs
    • Prongay AJ, Williams CH, Jr. Evidence for direct interaction between cysteine 138 and the flavin in thioredoxin reductase. A study using flavin analogs. J Biol Chem 1990;265:18968-75.
    • (1990) J Biol Chem , vol.265 , pp. 18968-18975
    • Prongay, A.J.1    Williams, C.H.2
  • 54
    • 77949359536 scopus 로고    scopus 로고
    • Proteinprotein interactions at an enzyme-substrate interface: Characterization of transient reaction intermediates throughout a full catalytic cycle of Escherichia coli thioredoxin reductase
    • Negri A, Rodriguez-Larrea D, Marco E, Jimenez-Ruiz A, Sanchez-Ruiz JM, Gago F. Proteinprotein interactions at an enzyme-substrate interface: characterization of transient reaction intermediates throughout a full catalytic cycle of Escherichia coli thioredoxin reductase. Proteins 2010;78:36-51.
    • (2010) Proteins , vol.78 , pp. 36-51
    • Negri, A.1    Rodriguez-Larrea, D.2    Marco, E.3    Jimenez-Ruiz, A.4    Sanchez-Ruiz, J.M.5    Gago, F.6
  • 55
    • 51849117298 scopus 로고    scopus 로고
    • Direct electrochemical analyses of a thermophilic thioredoxin reductase: Interplay between conformational change and redox chemistry
    • Hamill MJ, Chobot SE, Hernandez HH, Drennan CL, Elliott SJ. Direct electrochemical analyses of a thermophilic thioredoxin reductase: interplay between conformational change and redox chemistry. Biochemistry 2008;47:9738-46.
    • (2008) Biochemistry , vol.47 , pp. 9738-9746
    • Hamill, M.J.1    Chobot, S.E.2    Hernandez, H.H.3    Drennan, C.L.4    Elliott, S.J.5
  • 56
    • 34248550556 scopus 로고    scopus 로고
    • Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system
    • Jonsson TJ, Ellis HR, Poole LB. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Biochemistry 2007;46:5709-21.
    • (2007) Biochemistry , vol.46 , pp. 5709-5721
    • Jonsson, T.J.1    Ellis, H.R.2    Poole, L.B.3
  • 57
    • 79958216714 scopus 로고    scopus 로고
    • Bacillithiol, a new player in bacterial redox homeostasis
    • Helmann JD. Bacillithiol, a new player in bacterial redox homeostasis. Antioxidants & redox signaling 2011;15:123-33.
    • (2011) Antioxidants & redox Signaling , vol.15 , pp. 123-133
    • Helmann, J.D.1
  • 58
    • 34249895594 scopus 로고    scopus 로고
    • Characterization of a gene cluster responsible for the biosynthesis of anticancer agent FK228 inChromobacterium violaceum No. 968
    • Cheng YQ, Yang M, Matter AM. Characterization of a gene cluster responsible for the biosynthesis of anticancer agent FK228 in Chromobacterium violaceum No. 968. Appl Environ Microb 2007;73:3460-9.
    • (2007) Appl Environ Microb , vol.73 , pp. 3460-3469
    • Cheng, Y.Q.1    Yang, M.2    Matter, A.M.3
  • 59
    • 84869382112 scopus 로고    scopus 로고
    • Backup plan for self-protection: S-methylation of holomycin biosynthetic intermediates in Streptomyces clavuligerus
    • Li B, Forseth RR, Bowers AA, Schroeder FC, Walsh CT. A backup plan for self-protection: S-methylation of holomycin biosynthetic intermediates in Streptomyces clavuligerus. ChemBioChem 2012;13:2521-6.
    • (2012) Chembiochem , vol.13 , pp. 2521-2526
    • Li, B.1    Forseth, R.R.2    Bowers, A.A.3    Schroeder, F.C.4    Walsh, C.5
  • 60
    • 79958122239 scopus 로고    scopus 로고
    • Streptomyces clavuligerus HlmI is an intramolecular disulfide-forming dithiol oxidase in holomycin biosynthesis
    • Li B, Walsh CT. Streptomyces clavuligerus HlmI is an intramolecular disulfide-forming dithiol oxidase in holomycin biosynthesis. Biochemistry 2011;50:4615-22.
    • (2011) Biochemistry , vol.50 , pp. 4615-4622
    • Li, B.1    Walsh, C.T.2
  • 62
    • 77955800751 scopus 로고    scopus 로고
    • Transan-nular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus
    • Scharf DH, Remme N, Heinekamp T, Hortschansky P, Brakhage AA, Hertweck C. Transan-nular disulfide formation in gliotoxin biosynthesis and its role in self-resistance of the human pathogen Aspergillus fumigatus. J Am Chem Soc 2010;132:10136-41.
    • (2010) J am Chem Soc , vol.132 , pp. 10136-10141
    • Scharf, D.H.1    Remme, N.2    Heinekamp, T.3    Hortschansky, P.4    Brakhage, A.A.5    Hertweck, C.6
  • 63
    • 67649522901 scopus 로고    scopus 로고
    • An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide
    • Wang C, Wesener SR, Zhang H, Cheng YQ. An FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide. Chem Biol 2009;16:585-93.
    • (2009) Chem Biol , vol.16 , pp. 585-593
    • Wang, C.1    Wesener, S.R.2    Zhang, H.3    Cheng, Y.Q.4
  • 64
    • 0034792157 scopus 로고    scopus 로고
    • Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation
    • Claiborne A, Mallett TC, Yeh JI, Luba J, Parsonage D. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation. Adv Protein Chem 2001;58:215-76.
    • (2001) Adv Protein Chem , vol.58 , pp. 215-276
    • Claiborne, A.1    Mallett, T.C.2    Yeh, J.I.3    Luba, J.4    Parsonage, D.5
  • 66
    • 0032489438 scopus 로고    scopus 로고
    • Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme
    • delCardayre SB, Stock KP, Newton GL, Fahey RC, Davies JE. Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme. J Biol Chem 1998;273:5744-51.
    • (1998) J Biol Chem , vol.273 , pp. 5744-5751
    • Delcardayre, S.B.1    Stock, K.P.2    Newton, G.L.3    Fahey, R.C.4    Davies, J.E.5
  • 67
  • 68
    • 70350044409 scopus 로고    scopus 로고
    • Crystal structure and catalytic properties of Bacillus anthracis CoADR-RHD: Implications for flavin-linked sulfur trafficking
    • Wallen JR, Mallett TC, Boles W, Parsonage D, Furdui CM, Karplus PA, Claiborne A. Crystal structure and catalytic properties of Bacillus anthracis CoADR-RHD: implications for flavin-linked sulfur trafficking. Biochemistry 2009;48:9650-67.
    • (2009) Biochemistry , vol.48 , pp. 9650-9667
    • Wallen, J.R.1    Mallett, T.C.2    Boles, W.3    Parsonage, D.4    Furdui, C.M.5    Karplus, P.A.6    Claiborne, A.7
  • 69
    • 33646349748 scopus 로고    scopus 로고
    • Trafficking in persulfides: Delivering sulfur in biosynthetic pathways
    • Mueller EG. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2006;2:185-94.
    • (2006) Nat Chem Biol , vol.2 , pp. 185-194
    • Mueller, E.G.1
  • 70
    • 0035918520 scopus 로고    scopus 로고
    • Microbial metabolism of aliphatic alkenes
    • Ensign SA. Microbial metabolism of aliphatic alkenes. Biochemistry 2001;40:5845-53.
    • (2001) Biochemistry , vol.40 , pp. 5845-5853
    • Ensign, S.A.1
  • 71
    • 0035082222 scopus 로고    scopus 로고
    • Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2
    • Krum JG, Ensign SA. Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2. J Bacteriol 2001;183:2172-7.
    • (2001) J Bacteriol , vol.183 , pp. 2172-2177
    • Krum, J.G.1    Ensign, S.A.2
  • 72
    • 0035093086 scopus 로고    scopus 로고
    • Crystallization and preliminary X-ray analysis of a NADPH 2-ketopropyl-coenzyme M oxidoreductase/carboxylase
    • Jang SB, Jeong MS, Clark DD, Ensign SA, Peters JW. Crystallization and preliminary X-ray analysis of a NADPH 2-ketopropyl-coenzyme M oxidoreductase/carboxylase. Acta Crystal-logr D 2001;57:445-7.
    • (2001) Acta Crystal-Logr D , vol.57 , pp. 445-447
    • Jang, S.B.1    Jeong, M.S.2    Clark, D.D.3    Ensign, S.A.4    Peters, J.W.5
  • 73
    • 0037195050 scopus 로고    scopus 로고
    • Structural basis for CO2 fixation by a novel member of the disulfide oxidoreductase family of enzymes, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase
    • 2 fixation by a novel member of the disulfide oxidoreductase family of enzymes, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase. Biochemistry 2002;41:12907-13.
    • (2002) Biochemistry , vol.41 , pp. 12907-12913
    • Nocek, B.1    Jang, S.B.2    Jeong, M.S.3    Clark, D.D.4    Ensign, S.A.5    Peters, J.W.6
  • 74
    • 79551475786 scopus 로고    scopus 로고
    • Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M oxidoreductase/carboxylase
    • Pandey AS, Mulder DW, Ensign SA, Peters JW. Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M oxidoreductase/carboxylase. FEBS Lett 2011;585:459-64.
    • (2011) FEBS Lett , vol.585 , pp. 459-464
    • Pandey, A.S.1    Mulder, D.W.2    Ensign, S.A.3    Peters, J.W.4
  • 75
    • 30144446084 scopus 로고    scopus 로고
    • Mechanistic implications of the structure of the mixed-disulfide intermediate of the disulfide oxidoreductase, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase
    • Pandey AS, Nocek B, Clark DD, Ensign SA, Peters JW. Mechanistic implications of the structure of the mixed-disulfide intermediate of the disulfide oxidoreductase, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase. Biochemistry 2006;45:113-20.
    • (2006) Biochemistry , vol.45 , pp. 113-120
    • Pandey, A.S.1    Nocek, B.2    Clark, D.D.3    Ensign, S.A.4    Peters, J.W.5
  • 76
    • 0034673178 scopus 로고    scopus 로고
    • Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system
    • Clark DD, Allen JR, Ensign SA. Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system. Biochemistry 2000;39:1294-304.
    • (2000) Biochemistry , vol.39 , pp. 1294-1304
    • Clark, D.D.1    Allen, J.R.2    Ensign, S.A.3
  • 77
    • 80052541462 scopus 로고    scopus 로고
    • Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase
    • Kofoed MA, Wampler DA, Pandey AS, Peters JW, Ensign SA. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase. J Bacteriol 2011;193:4904-13.
    • (2011) J Bacteriol , vol.193 , pp. 4904-4913
    • Kofoed, M.A.1    Wampler, D.A.2    Pandey, A.S.3    Peters, J.W.4    Ensign, S.A.5
  • 78
    • 77955508402 scopus 로고    scopus 로고
    • Mechanism of inhibition of aliphatic epoxide carboxylation by the coenzyme M analog 2-bromoethanesulfonate
    • Boyd JM, Clark DD, Kofoed MA, Ensign SA. Mechanism of inhibition of aliphatic epoxide carboxylation by the coenzyme M analog 2-bromoethanesulfonate. J Biol Chem 2010;285:25232-42.
    • (2010) J Biol Chem , vol.285 , pp. 25232-25242
    • Boyd, J.M.1    Clark, D.D.2    Kofoed, M.A.3    Ensign, S.A.4
  • 81
    • 77951225834 scopus 로고    scopus 로고
    • A new structure-based classification of sulfide:Quinone oxidoreductases
    • Marcia M, Ermler U, Peng G, Michel H. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 2010;78:1073-83.
    • (2010) Proteins , vol.78 , pp. 1073-1083
    • Marcia, M.1    Ermler, U.2    Peng, G.3    Michel, H.4
  • 82
    • 0036845556 scopus 로고    scopus 로고
    • Two's company, three's a crowd: Can H2S be the third endogenous gaseous transmitter?
    • 2S be the third endogenous gaseous transmitter? FASEB J 2002;16:1792-8.
    • (2002) FASEB J , vol.16 , pp. 1792-1798
    • Wang, R.1
  • 83
    • 67649872642 scopus 로고    scopus 로고
    • The structure of Aquifex aeolicus sulfide:Quinone oxidoreductase, a basis to understand sulfide detoxification and respiration
    • Marcia M, Ermler U, Peng G, Michel H. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. Proc Natl Acad Sci USA 2009;106:9625-30.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 9625-9630
    • Marcia, M.1    Ermler, U.2    Peng, G.3    Michel, H.4
  • 84
    • 84861478324 scopus 로고    scopus 로고
    • Structure-activity characterization of sulfide:Quinone oxidoreductase variants
    • Cherney MM, Zhang Y, James MN, Weiner JH. Structure-activity characterization of sulfide:quinone oxidoreductase variants. J Struct Biol 2012;178:319-28.
    • (2012) J Struct Biol , vol.178 , pp. 319-328
    • Cherney, M.M.1    Zhang, Y.2    James, M.N.3    Weiner, J.H.4
  • 85
    • 77951703678 scopus 로고    scopus 로고
    • Crystal structure of sulfide:Quinone oxidoreductase from Acidithiobacillus ferrooxidans: Insights into sulfido-trophic respiration and detoxification
    • Cherney MM, Zhang Y, Solomonson M, Weiner JH, James MN. Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans: insights into sulfido-trophic respiration and detoxification. J Mol Biol 2010;398:292-305.
    • (2010) J Mol Biol , vol.398 , pp. 292-305
    • Cherney, M.M.1    Zhang, Y.2    Solomonson, M.3    Weiner, J.H.4    James, M.N.5
  • 87
    • 0029737618 scopus 로고    scopus 로고
    • Structure of the native cysteine-sulfenic acid redox center of enterococcal NADH peroxidase refined at 2.8 Ä resolution
    • Yeh JI, Claiborne A, Hol WG. Structure of the native cysteine-sulfenic acid redox center of enterococcal NADH peroxidase refined at 2.8 Ä resolution. Biochemistry 1996;35:9951-7.
    • (1996) Biochemistry , vol.35 , pp. 9951-9957
    • Yeh, J.I.1    Claiborne, A.2    Hol, W.G.3
  • 89
    • 80053920610 scopus 로고    scopus 로고
    • Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: Discovery, synthesis, and characterization of their binding mode by protein crystallography
    • Patterson S, Alphey MS, Jones DC, Shanks EJ, Street IP, Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography. J Med Chem 2011;54:6514-30.
    • (2011) J Med Chem , vol.54 , pp. 6514-6530
    • Patterson, S.1    Alphey, M.S.2    Jones, D.C.3    Shanks, E.J.4    Street, I.P.5    Frearson, J.A.6    Wyatt, P.G.7    Gilbert, I.H.8    Fairlamb, A.H.9
  • 90
    • 0021106272 scopus 로고
    • Mercuric reductase: Homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide
    • Fox BS, Walsh CT. Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide. Biochemistry 1983;22:4082-8.
    • (1983) Biochemistry , vol.22 , pp. 4082-4088
    • Fox, B.S.1    Walsh, C.T.2
  • 91
    • 0021750985 scopus 로고
    • The reaction between NADPH and mercuric reductase from Pseudomonas aeruginosa
    • Sahlman L, Lambeir AM, Lindskog S, Dunford HB. The reaction between NADPH and mercuric reductase from Pseudomonas aeruginosa. J Biol Chem 1984;259:12403-8.
    • (1984) J Biol Chem , vol.259 , pp. 12403-12408
    • Sahlman, L.1    Lambeir, A.M.2    Lindskog, S.3    Dunford, H.B.4
  • 93
    • 23244466487 scopus 로고    scopus 로고
    • Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
    • Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 2005;44:10583-92.
    • (2005) Biochemistry , vol.44 , pp. 10583-10592
    • Parsonage, D.1    Youngblood, D.S.2    Sarma, G.N.3    Wood, Z.A.4    Karplus, P.A.5    Poole, L.B.6
  • 94
    • 0035799315 scopus 로고    scopus 로고
    • Structure of intact AhpF reveals a mirrored thioredox i n-like active site and implies large domain rotations during catalysis
    • Wood ZA, Poole LB, Karplus PA. Structure of intact AhpF reveals a mirrored thioredox i n-like active site and implies large domain rotations during catalysis. Biochemistry 2001;40: 3900-11.
    • (2001) Biochemistry , vol.40 , pp. 3900-3911
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.