메뉴 건너뛰기




Volumn 61, Issue 15, 2016, Pages 2763-2774

Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow

Author keywords

artificial neural networks; IDNN; Rainfall runoff; SAC SMA

Indexed keywords

CALIBRATION; CATCHMENTS; GENETIC ALGORITHMS; NEURAL NETWORKS; RAIN; RUNOFF; SOIL MOISTURE; STREAM FLOW;

EID: 84978933437     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2016.1154151     Document Type: Article
Times cited : (59)

References (87)
  • 2
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • F.Anctil, C.Perrin, and V.Andréassian, 2004. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environmental Modelling & Software, 19, 357–368. doi:10.1016/S1364-8152(03)00135-X
    • (2004) Environmental Modelling & Software , vol.19 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andréassian, V.3
  • 3
    • 84890568775 scopus 로고    scopus 로고
    • The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios
    • N.W.Arnell, and B.Lloyd-Hughes, 2014. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Change, 122, 127–140. doi:10.1007/s10584-013-0948-4
    • (2014) Climatic Change , vol.122 , pp. 127-140
    • Arnell, N.W.1    Lloyd-Hughes, B.2
  • 4
    • 0004208203 scopus 로고
    • US Department of Agriculture, Agricultural Research Service, Grassland, Soil and Water Research Laboratory
    • J.G.Arnold, et al., 1994. SWAT:soil and water assessment tool. Temple, TX:US Department of Agriculture, Agricultural Research Service, Grassland, Soil and Water Research Laboratory.
    • (1994) SWAT: soil and water assessment tool
    • Arnold, J.G.1
  • 5
    • 0031917620 scopus 로고    scopus 로고
    • Large area hydrologic modeling and assessment part I: model development1
    • J.G.Arnold, et al., 1998. Large area hydrologic modeling and assessment part I:model development1. Journal of the American Water Resources Association, 34, 73–89.
    • (1998) Journal of the American Water Resources Association , vol.34 , pp. 73-89
    • Arnold, J.G.1
  • 6
    • 84905975104 scopus 로고    scopus 로고
    • Comparison of stochastic optimization algorithms in hydrological model calibration
    • R.Arsenault, et al., 2013. Comparison of stochastic optimization algorithms in hydrological model calibration. Journal of Hydrologic Engineering, 19, 1374–1384. doi:10.1061/(ASCE)HE.1943-5584.0000938
    • (2013) Journal of Hydrologic Engineering , vol.19 , pp. 1374-1384
    • Arsenault, R.1
  • 8
    • 0034896615 scopus 로고    scopus 로고
    • Dalton Medal Lecture: how far can we go in distributed hydrological modelling?
    • K.Beven, 2001. Dalton Medal Lecture:how far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences, 5, 1–12. doi:10.5194/hess-5-1-2001
    • (2001) Hydrology and Earth System Sciences , vol.5 , pp. 1-12
    • Beven, K.1
  • 9
    • 0027009437 scopus 로고
    • The future of distributed models: model calibration and uncertainty prediction
    • K.Beven, and A.Binley, 1992. The future of distributed models:model calibration and uncertainty prediction. Hydrological Processes, 6, 279–298. doi:10.1002/(ISSN)1099-1085
    • (1992) Hydrological Processes , vol.6 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 10
    • 77955276945 scopus 로고    scopus 로고
    • Rainfall-runoff modeling: comparison of two approaches with different data requirements
    • A.Bhadra, et al., 2010. Rainfall-runoff modeling:comparison of two approaches with different data requirements. Water Resources Management, 24, 37–62. doi:10.1007/s11269-009-9436-z
    • (2010) Water Resources Management , vol.24 , pp. 37-62
    • Bhadra, A.1
  • 11
    • 84991324511 scopus 로고    scopus 로고
    • Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size mediterranean watershed using the annagnps model
    • T.Bisantino, et al., 2013. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size mediterranean watershed using the annagnps model. Land Degradation & Development.
    • (2013) Land Degradation & Development
    • Bisantino, T.1
  • 12
    • 84928582947 scopus 로고    scopus 로고
    • Modelling post-tree-harvesting soil erosion and sediment deposition potential in the Turano River Basin (Italian Central Apennine)
    • P.Borrelli, M.Märker, and B.Schütt, 2013. Modelling post-tree-harvesting soil erosion and sediment deposition potential in the Turano River Basin (Italian Central Apennine). Land Degradation & Development.
    • (2013) Land Degradation & Development
    • Borrelli, P.1    Märker, M.2    Schütt, B.3
  • 14
    • 84991314403 scopus 로고    scopus 로고
    • Comparison of a neural network and a conceptual model for rainfall-runoff modelling with monthly input
    • C.Chochlidakis, I.Daliakopoulos, and I.Tsanis, 2014. Comparison of a neural network and a conceptual model for rainfall-runoff modelling with monthly input. In:EGU General Assembly, 27 April–2 May Vienna. Abstract 3905.
    • (2014) EGU General Assembly
    • Chochlidakis, C.1    Daliakopoulos, I.2    Tsanis, I.3
  • 15
    • 0032829433 scopus 로고    scopus 로고
    • Prévision hydrologique par réseaux de neurones artificiels: état de l’art
    • P.Coulibaly, F.Anctil, and B.Bobée, 1999. Prévision hydrologique par réseaux de neurones artificiels:état de l’art. Canadian Journal of Civil Engineering, 26, 293–304. doi:10.1139/l98-069
    • (1999) Canadian Journal of Civil Engineering , vol.26 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 16
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
    • P.Coulibaly, B.Bobée, and F.Anctil, 2001. Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrological Processes, 15, 1533–1536. doi:10.1002/hyp.v15:8
    • (2001) Hydrological Processes , vol.15 , pp. 1533-1536
    • Coulibaly, P.1    Bobée, B.2    Anctil, F.3
  • 18
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • I.N.Daliakopoulos, P.Coulibaly, and I.K.Tsanis, 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309, 229–240. doi:10.1016/j.jhydrol.2004.12.001
    • (2005) Journal of Hydrology , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 19
    • 34249810384 scopus 로고    scopus 로고
    • Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model
    • N.De Vos, and T.Rientjes, 2007. Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model. Hydrological Sciences Journal, 52, 397–413. doi:10.1623/hysj.52.3.397
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 397-413
    • De Vos, N.1    Rientjes, T.2
  • 22
    • 84859369782 scopus 로고    scopus 로고
    • How is the impact of climate change on river flow regimes related to the impact on mean annual runoff?
    • P.Döll, and H.M.Schmied, 2012. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A Global-Scale Analysis. Environmental Research Letters, 7, 014037. doi:10.1088/1748-9326/7/1/014037
    • (2012) A Global-Scale Analysis. Environmental Research Letters , pp. 7, 014037
    • Döll, P.1    Schmied, H.M.2
  • 23
    • 0027558431 scopus 로고
    • Shuffled complex evolution approach for effective and efficient global minimization
    • Q.Duan, V.K.Gupta, and S.Sorooshian, 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76, 501–521. doi:10.1007/BF00939380
    • (1993) Journal of Optimization Theory and Applications , vol.76 , pp. 501-521
    • Duan, Q.1    Gupta, V.K.2    Sorooshian, S.3
  • 24
    • 84991315642 scopus 로고    scopus 로고
    • Groundwater quality and quantity in Europe. Environmental assessment report
    • Copenhagen:
    • EEA, 1999. Groundwater quality and quantity in Europe. Environmental assessment report. European Environment Agency, Copenhagen.
    • (1999) European Environment Agency
  • 25
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: principles and understanding
    • I.Flood, and N.Kartam, 1994a. Neural networks in civil engineering. I:principles and understanding. Journal of Computing in Civil Engineering, 8, 131–148. doi:10.1061/(ASCE)0887-3801(1994)8:2(131)
    • (1994) Journal of Computing in Civil Engineering , vol.8 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 26
    • 0028413247 scopus 로고
    • Neural networks in civil engineering. II: systems and application
    • I.Flood, and N.Kartam, 1994b. Neural networks in civil engineering. II:systems and application. Journal of Computing in Civil Engineering, 8, 149–162. doi:10.1061/(ASCE)0887-3801(1994)8:2(149)
    • (1994) Journal of Computing in Civil Engineering , vol.8 , pp. 149-162
    • Flood, I.1    Kartam, N.2
  • 27
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • M.N.French, W.F.Krajewski, and R.R.Cuykendall, 1992. Rainfall forecasting in space and time using a neural network. Journal of Hydrology, 137, 1–31. doi:10.1016/0022-1694(92)90046-X
    • (1992) Journal of Hydrology , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 28
    • 84893320680 scopus 로고    scopus 로고
    • Seasonal changes in the soil hydrological and erosive response depending on aspect, vegetation type and soil water repellency in different Mediterranean microenvironments
    • M.Gabarrón-Galeote, et al., 2013. Seasonal changes in the soil hydrological and erosive response depending on aspect, vegetation type and soil water repellency in different Mediterranean microenvironments. Solid Earth, 4, 497–509. doi:10.5194/se-4-497-2013
    • (2013) Solid Earth , vol.4 , pp. 497-509
    • Gabarrón-Galeote, M.1
  • 29
    • 84885453434 scopus 로고    scopus 로고
    • Effects of land use on soil moisture variations in a semi-arid catchment: implications for land and agricultural water management
    • X.Gao, et al., 2014. Effects of land use on soil moisture variations in a semi-arid catchment:implications for land and agricultural water management. Land Degradation & Development, 25, 163–172. doi:10.1002/ldr.v25.2
    • (2014) Land Degradation & Development , vol.25 , pp. 163-172
    • Gao, X.1
  • 30
    • 1642414601 scopus 로고    scopus 로고
    • Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?
    • E.Gaume, and R.Gosset, 2003. Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology? Hydrology and Earth System Sciences Discussions, 7, 693–706. doi:10.5194/hess-7-693-2003
    • (2003) Hydrology and Earth System Sciences Discussions , vol.7 , pp. 693-706
    • Gaume, E.1    Gosset, R.2
  • 31
    • 84959237433 scopus 로고    scopus 로고
    • A global assessment of the impact of climate change on water scarcity
    • S.N.Gosling, and N.W.Arnell, 2013. A global assessment of the impact of climate change on water scarcity. Climatic Change, 134, 371–385. doi:10.1007/s10584-013-0853-x
    • (2013) Climatic Change , pp. 371-385
    • Gosling, S.N.1    Arnell, N.W.2
  • 32
    • 0027038056 scopus 로고
    • Physically based hydrologic modeling: 2. Is the concept realistic?
    • R.B.Grayson, I.D.Moore, and T.A.McMahon, 1992. Physically based hydrologic modeling:2. Is the concept realistic? Water Resources Research, 28, 2659–2666. doi:10.1029/92WR01259
    • (1992) Water Resources Research , vol.28 , pp. 2659-2666
    • Grayson, R.B.1    Moore, I.D.2    McMahon, T.A.3
  • 33
    • 0033117411 scopus 로고    scopus 로고
    • Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration
    • H.V.Gupta, S.Sorooshian, and P.O.Yapo, 1999. Status of automatic calibration for hydrologic models:comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4, 135–143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)
    • (1999) Journal of Hydrologic Engineering , vol.4 , pp. 135-143
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 34
    • 84880797395 scopus 로고    scopus 로고
    • A global water scarcity assessment under shared socio-economic pathways–part 1: water use
    • others
    • N.Hanasaki, et al., 2013. A global water scarcity assessment under shared socio-economic pathways–part 1:water use. Hydrology and Earth System Sciences, 17, 2375–2391. others. doi:10.5194/hess-17-2375-2013
    • (2013) Hydrology and Earth System Sciences , vol.17 , pp. 2375-2391
    • Hanasaki, N.1
  • 35
    • 84876141943 scopus 로고    scopus 로고
    • Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia
    • N.Haregeweyn, et al., 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. Land Degradation & Development, 24, 188–204. doi:10.1002/ldr.v24.2
    • (2013) Land Degradation & Development , vol.24 , pp. 188-204
    • Haregeweyn, N.1
  • 36
    • 0027306481 scopus 로고
    • Artificial neural networks as unit hydrograph applications
    • New York: American Society of Civil Engineers (ASCE), 754–759
    • A.T.Hjelmfelt, and M.Wang, 1993. Artificial neural networks as unit hydrograph applications. In:Proceedings Engineering Hydrology. New York:American Society of Civil Engineers (ASCE), 754–759.
    • (1993) Proceedings Engineering Hydrology
    • Hjelmfelt, A.T.1    Wang, M.2
  • 37
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • K.Hsu, H.V.Gupta, and S.Sorooshian, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31, 2517–2530. doi:10.1029/95WR01955
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 38
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • D.-I.Jeong, and Y.-O.Kim, 2005. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrological Processes, 19, 3819–3835. doi:10.1002/(ISSN)1099-1085
    • (2005) Hydrological Processes , vol.19 , pp. 3819-3835
    • Jeong, D.-I.1    Kim, Y.-O.2
  • 39
  • 40
    • 84991324495 scopus 로고    scopus 로고
    • Combinations of specilaized conceptual and neural network rainfall-runoff models: comparison of performance
    • N.Kayastha, and D.Solomatine, 2013. Combinations of specilaized conceptual and neural network rainfall-runoff models:comparison of performance. In:EGU General Assembly, 7–12 April, Vienna. Abstract 9022.
    • (2013) EGU General Assembly , pp. 9022
    • Kayastha, N.1    Solomatine, D.2
  • 41
    • 33846408011 scopus 로고    scopus 로고
    • Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia
    • S.Keesstra, 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms, 32, 49–65. doi:10.1002/(ISSN)1096-9837
    • (2007) Earth Surface Processes and Landforms , vol.32 , pp. 49-65
    • Keesstra, S.1
  • 42
    • 70349165934 scopus 로고    scopus 로고
    • Meso-scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia
    • S.Keesstra, L.Bruijnzeel, and J.Van Huissteden, 2009. Meso-scale catchment sediment budgets:combining field surveys and modeling in the Dragonja catchment, southwest Slovenia. Earth Surface Processes and Landforms, 34, 1547–1561. doi:10.1002/esp.v34:11
    • (2009) Earth Surface Processes and Landforms , vol.34 , pp. 1547-1561
    • Keesstra, S.1    Bruijnzeel, L.2    Van Huissteden, J.3
  • 43
    • 84895922481 scopus 로고    scopus 로고
    • Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D
    • S.Keesstra, et al., 2014. Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D. Geomorphology, 212, 97–107. doi:10.1016/j.geomorph.2013.04.021
    • (2014) Geomorphology , vol.212 , pp. 97-107
    • Keesstra, S.1
  • 44
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Ö.Kişi, 2007. Streamflow forecasting using different artificial neural network algorithms. Journal of Hydrologic Engineering, 12, 532–539. doi:10.1061/(ASCE)1084-0699(2007)12:5(532)
    • (2007) Journal of Hydrologic Engineering , vol.12 , pp. 532-539
    • Kişi, Ö.1
  • 45
    • 78049233695 scopus 로고    scopus 로고
    • Seasonality of floods and their hydrometeorologic characteristics in the island of Crete
    • A.G.Koutroulis, I.K.Tsanis, and I.N.Daliakopoulos, 2010. Seasonality of floods and their hydrometeorologic characteristics in the island of Crete. Journal of Hydrology, 394, 90–100. doi:10.1016/j.jhydrol.2010.04.025
    • (2010) Journal of Hydrology , vol.394 , pp. 90-100
    • Koutroulis, A.G.1    Tsanis, I.K.2    Daliakopoulos, I.N.3
  • 46
    • 84979404783 scopus 로고
    • Back propagation in time-series forecasting
    • G.Lachtermacher, and J.D.Fuller, 1995. Back propagation in time-series forecasting. Journal of Forecasting, 14, 381–393. doi:10.1002/(ISSN)1099-131X
    • (1995) Journal of Forecasting , vol.14 , pp. 381-393
    • Lachtermacher, G.1    Fuller, J.D.2
  • 48
    • 84902077423 scopus 로고    scopus 로고
    • Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using WATEM/SEDEM
    • J.Lieskovský, and P.Kenderessy, 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards:a case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degradation & Development, 25, 288–296. doi:10.1002/ldr.v25.3
    • (2014) Land Degradation & Development , vol.25 , pp. 288-296
    • Lieskovský, J.1    Kenderessy, P.2
  • 49
    • 84991345467 scopus 로고    scopus 로고
    • Improving neural network model performance in runoff estimation by using an antecedent precipitation index
    • S.Lipiwattanakarn, N.Sriwongsitanon, and S.Saengsawang, 2004. Improving neural network model performance in runoff estimation by using an antecedent precipitation index. Journal of Hydrosci Hydraul Eng, 22, 141–154.
    • (2004) Journal of Hydrosci Hydraul Eng , vol.22 , pp. 141-154
    • Lipiwattanakarn, S.1    Sriwongsitanon, N.2    Saengsawang, S.3
  • 54
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: implementation and theory
    • Springer
    • J.J.Moré, 1978. The Levenberg-Marquardt algorithm:implementation and theory. In:Numerical analysis. Berlin:Springer, 105–116. doi:10.1007/BFb0067700
    • (1978) Numerical analysis , pp. 105-116
    • Moré, J.J.1
  • 55
    • 84877830096 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach
    • P.Nayak, et al., 2013. Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. Journal of Hydrology, 493, 57–67. doi:10.1016/j.jhydrol.2013.04.016
    • (2013) Journal of Hydrology , vol.493 , pp. 57-67
    • Nayak, P.1
  • 56
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: comparing and combining conceptual and neural network models
    • P.Nilsson, C.B.Uvo, and R.Berndtsson, 2006. Monthly runoff simulation:comparing and combining conceptual and neural network models. Journal of Hydrology, 321, 344–363. doi:10.1016/j.jhydrol.2005.08.007
    • (2006) Journal of Hydrology , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 57
    • 84905401596 scopus 로고    scopus 로고
    • Twentieth century land resilience in Montenegro and consequent hydrological response
    • J.Nyssen, et al., others, 2014. Twentieth century land resilience in Montenegro and consequent hydrological response. Land Degradation & Development, 25, 336–349. doi:10.1002/ldr.v25.4
    • (2014) Land Degradation & Development , vol.25 , pp. 336-349
    • Nyssen, J.1
  • 58
    • 3242769911 scopus 로고    scopus 로고
    • State space neural networks for short term rainfall-runoff forecasting
    • T.Pan, and R.Wang, 2004. State space neural networks for short term rainfall-runoff forecasting. Journal of Hydrology, 297, 34–50. doi:10.1016/j.jhydrol.2004.04.010
    • (2004) Journal of Hydrology , vol.297 , pp. 34-50
    • Pan, T.1    Wang, R.2
  • 59
    • 84991404185 scopus 로고    scopus 로고
    • GR4J: a parsimonious model for rainfall-runoff simulations
    • C.Perrin, et al., 2005. GR4J:a parsimonious model for rainfall-runoff simulations. In:Geophysical research abstracts, 09642. Vienna:EGU.
    • (2005) Geophysical research abstracts
    • Perrin, C.1
  • 61
    • 84872660859 scopus 로고    scopus 로고
    • Adapting to climate change by improving water productivity of soils in dry areas
    • M.Qadir, A.Noble, and C.Chartres, 2013. Adapting to climate change by improving water productivity of soils in dry areas. Land Degradation & Development, 24, 12–21. doi:10.1002/ldr.v24.1
    • (2013) Land Degradation & Development , vol.24 , pp. 12-21
    • Qadir, M.1    Noble, A.2    Chartres, C.3
  • 62
    • 84887502899 scopus 로고    scopus 로고
    • Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting
    • M.Rezaeianzadeh, et al., 2013. Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting. International Journal of Environmental Science and Technology, 10, 1181–1192. doi:10.1007/s13762-013-0209-0
    • (2013) International Journal of Environmental Science and Technology , vol.10 , pp. 1181-1192
    • Rezaeianzadeh, M.1
  • 63
    • 84947784223 scopus 로고    scopus 로고
    • Preventing premature convergence to local optima in genetic algorithms via random offspring generation
    • Springer
    • M.Rocha, and J.Neves, 1999. Preventing premature convergence to local optima in genetic algorithms via random offspring generation. In:Multiple approaches to intelligent systems. Berlin:Springer, 127–136. doi:10.1007/978-3-540-48765-4_16
    • (1999) Multiple approaches to intelligent systems , pp. 127-136
    • Rocha, M.1    Neves, J.2
  • 66
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • A.Y.Shamseldin, 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology, 199, 272–294. doi:10.1016/S0022-1694(96)03330-6
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 68
    • 33845270185 scopus 로고    scopus 로고
    • Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed
    • P.Srivastava, J.N.McNair, and T.E.Johnson, 2006. Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. JAWRA Journal of the American Water Resources Association, 42, 545–563. doi:10.1111/jawr.2006.42.issue-3
    • (2006) JAWRA Journal of the American Water Resources Association , vol.42 , pp. 545-563
    • Srivastava, P.1    McNair, J.N.2    Johnson, T.E.3
  • 70
    • 67650366853 scopus 로고    scopus 로고
    • Optimal functional forms for estimation of missing precipitation data
    • R.S.Teegavarapu, M.Tufail, and L.Ormsbee, 2009. Optimal functional forms for estimation of missing precipitation data. Journal of Hydrology, 374, 106–115. doi:10.1016/j.jhydrol.2009.06.014
    • (2009) Journal of Hydrology , vol.374 , pp. 106-115
    • Teegavarapu, R.S.1    Tufail, M.2    Ormsbee, L.3
  • 72
    • 0034298851 scopus 로고    scopus 로고
    • Application of tank, NAM, ARMA and neural network models to flood forecasting
    • T.Tingsanchali, and M.R.Gautam, 2000. Application of tank, NAM, ARMA and neural network models to flood forecasting. Hydrological Processes, 14, 2473–2487. doi:10.1002/(ISSN)1099-1085
    • (2000) Hydrological Processes , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Gautam, M.R.2
  • 73
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • A.S.Tokar, and P.A.Johnson, 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4, 232–239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232)
    • (1999) Journal of Hydrologic Engineering , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 74
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • A.S.Tokar, and M.Markus, 2000. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering, 5, 156–161. doi:10.1061/(ASCE)1084-0699(2000)5:2(156)
    • (2000) Journal of Hydrologic Engineering , vol.5 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 76
    • 54449098749 scopus 로고    scopus 로고
    • Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation
    • I.Tsanis, P.Coulibaly, and I.Daliakopoulos, 2008. Improving groundwater level forecasting with a feedforward neural network and linearly regressed projected precipitation. Journal of Hydroinformatics, 10, 317–330. doi:10.2166/hydro.2008.006
    • (2008) Journal of Hydroinformatics , vol.10 , pp. 317-330
    • Tsanis, I.1    Coulibaly, P.2    Daliakopoulos, I.3
  • 77
    • 0005852227 scopus 로고
    • US Army Corps of Engineers, Hydrologic Engineering Center
    • USACE, 1981. HEC-1, flood hydrograph package. Users manual. Davis, CA:US Army Corps of Engineers, Hydrologic Engineering Center.
    • (1981) HEC-1, flood hydrograph package. Users manual
  • 78
    • 0003632689 scopus 로고    scopus 로고
    • US Army Corps of Engineers, Hydrologic Engineering Center
    • USACE, 2000. Hydrologic modeling system HEC-HMS:user’s manual. Davis, CA:US Army Corps of Engineers, Hydrologic Engineering Center.
    • (2000) Hydrologic modeling system HEC-HMS: user’s manual
  • 79
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • J.A.Vrugt, et al., 2003. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39. doi:10.1029/2002WR001642
    • (2003) Water Resources Research , pp. 39
    • Vrugt, J.A.1
  • 80
    • 0030719780 scopus 로고    scopus 로고
    • Using genetic algorithms to optimise model parameters
    • Q.Wang, 1997. Using genetic algorithms to optimise model parameters. Environmental Modelling & Software, 12, 27–34. doi:10.1016/S1364-8152(96)00030-8
    • (1997) Environmental Modelling & Software , vol.12 , pp. 27-34
    • Wang, Q.1
  • 81
    • 0005613393 scopus 로고
    • Reciprocal distance squared, a computer technique for estimating area precipitation. Technical Report ARS-Nc-8
    • T.Wei, and J.McGuiness, 1973. Reciprocal distance squared, a computer technique for estimating area precipitation. Technical Report ARS-Nc-8. US Agricultural Research Service, North Central Region, Ohio.
    • (1973) US Agricultural Research Service, North Central Region, Ohio
    • Wei, T.1    McGuiness, J.2
  • 83
    • 84873596192 scopus 로고    scopus 로고
    • Comparison of three global optimization algorithms for calibration of the Xinanjiang model parameters
    • D.Xu, et al., 2013. Comparison of three global optimization algorithms for calibration of the Xinanjiang model parameters. J. Hydroinform, 15, 174–193. doi:10.2166/hydro.2012.053
    • (2013) J. Hydroinform , vol.15 , pp. 174-193
    • Xu, D.1
  • 84
    • 0030173841 scopus 로고    scopus 로고
    • WatBal: an integrated water balance model for climate impact assessment of river basin runoff
    • D.N.Yates, 1996. WatBal:an integrated water balance model for climate impact assessment of river basin runoff. International Journal of Water Resources Development, 12, 121–140. doi:10.1080/07900629650041902
    • (1996) International Journal of Water Resources Development , vol.12 , pp. 121-140
    • Yates, D.N.1
  • 87
    • 84890248627 scopus 로고    scopus 로고
    • Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment
    • F.Ziadat, and A.Taimeh, 2013. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24, 582–590. doi:10.1002/ldr.v24.6
    • (2013) Land Degradation & Development , vol.24 , pp. 582-590
    • Ziadat, F.1    Taimeh, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.