메뉴 건너뛰기




Volumn 10, Issue 6, 2013, Pages 1181-1192

Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting

Author keywords

Activation functions; Continuous rainfall runoff; HMS SMA model; Khosrow Shirin watershed; Multi layer perceptron

Indexed keywords

CHEMICAL ACTIVATION; FLOODS; FORECASTING; SOIL MOISTURE; WATERSHEDS;

EID: 84887502899     PISSN: 17351472     EISSN: 17352630     Source Type: Journal    
DOI: 10.1007/s13762-013-0209-0     Document Type: Article
Times cited : (76)

References (36)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cog Sci 9: 147-169.
    • (1985) Cog Sci , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 2
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic stream flow generation
    • Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic stream flow generation. Water Resour Manag 21: 1015-1029.
    • (2007) Water Resour Manag , vol.21 , pp. 1015-1029
    • Ahmed, J.A.1    Sarma, A.K.2
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology. I: preliminary concepts. ASCE J Hydrol Eng 5(2): 115-123.
    • (2000) ASCE J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol Sci J 43(1): 47-66.
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 9
    • 2342575589 scopus 로고    scopus 로고
    • Continuous hydrologic modeling study with the hydrologic modeling system
    • Fleming M, Neary M (2004) Continuous hydrologic modeling study with the hydrologic modeling system. ASCE J Hydrol Eng 9(3): 175-183.
    • (2004) ASCE J Hydrol Eng , vol.9 , Issue.3 , pp. 175-183
    • Fleming, M.1    Neary, M.2
  • 10
    • 45449099234 scopus 로고    scopus 로고
    • Surface water resources assessment in scarcely gauged basins in the north of Spain
    • García A, Sainz A, Revillaa JA, Álvareza C, Juanesa JA, Puentea A (2008) Surface water resources assessment in scarcely gauged basins in the north of Spain. J Hydrol 356(3-4): 312-326.
    • (2008) J Hydrol , vol.356 , Issue.3-4 , pp. 312-326
    • García, A.1    Sainz, A.2    Revillaa, J.A.3    Álvareza, C.4    Juanesa, J.A.5    Puentea, A.6
  • 11
    • 35448991280 scopus 로고    scopus 로고
    • Hydrologic data exploration and river flow forecasting of a humid tropical river basin using artificial neural networks
    • Gopakumar R, Takara K, James EJ (2007) Hydrologic data exploration and river flow forecasting of a humid tropical river basin using artificial neural networks. Water Resour Manag 21: 1915-1940.
    • (2007) Water Resour Manag , vol.21 , pp. 1915-1940
    • Gopakumar, R.1    Takara, K.2    James, E.J.3
  • 13
    • 0023515080 scopus 로고
    • Counter propagation networks
    • Hecht-Nielsen R (1987) Counter propagation networks. Applied Optimization 36: 4979-4984.
    • (1987) Applied Optimization , vol.36 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 14
    • 0003632689 scopus 로고    scopus 로고
    • Hydrologic Engineering Center (HEC), Davis: U.S Army Corps of Engineers, Hydrologic Engineering Center
    • Hydrologic Engineering Center (HEC) (2000) Hydrologic modeling system HEC-HMS: Technical reference manual. U. S Army Corps of Engineers, Hydrologic Engineering Center, Davis.
    • (2000) Hydrologic Modeling System HEC-HMS: Technical Reference Manual
  • 15
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural network
    • Kisi O (2004) River flow modeling using artificial neural network. ASCE J Hydrol Eng 9(1): 60-63.
    • (2004) ASCE J Hydrol Eng , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 16
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • doi:10.2166/nh.2008.026
    • Kisi O (2008) River flow forecasting and estimation using different artificial neural network techniques. Hydrol Res 39(1): 27-40. doi: 10. 2166/nh. 2008. 026.
    • (2008) Hydrol Res , vol.39 , Issue.1 , pp. 27-40
    • Kisi, O.1
  • 17
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kişi O (2007) Streamflow forecasting using different artificial neural network algorithms. ASCE J Hydrol Eng 12(5): 532-539.
    • (2007) ASCE J Hydrol Eng , vol.12 , Issue.5 , pp. 532-539
    • Kişi, O.1
  • 18
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks: comparison of network types
    • Kumar APS, Sudheer KP, Jain SK, Agarwal PK (2005) Rainfall-runoff modeling using artificial neural networks: comparison of network types. Hydrol Process 19: 1277-1291.
    • (2005) Hydrol Process , vol.19 , pp. 1277-1291
    • Kumar, A.P.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 21
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Mod Softw 15: 101-123.
    • (2000) Environ Mod Softw , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 63149104793 scopus 로고    scopus 로고
    • Multi-criteria validation of artificial neural network rainfall-runoff modeling
    • Modarres R (2009) Multi-criteria validation of artificial neural network rainfall-runoff modeling. Hydrol Earth Syst Sci 13: 411-421.
    • (2009) Hydrol Earth Syst Sci , vol.13 , pp. 411-421
    • Modarres, R.1
  • 23
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4): 525-533.
    • (1993) Neural Netw , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.1
  • 24
    • 67650293317 scopus 로고    scopus 로고
    • Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
    • Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process 22(26): 5097-5106.
    • (2008) Hydrol Process , vol.22 , Issue.26 , pp. 5097-5106
    • Mutlu, E.1    Chaubey, I.2    Hexmoor, H.3    Bajwa, S.G.4
  • 27
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Rezaeian Zadeh M, Amin S, Khalili D, Singh VP (2010) Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour Manag 24(11): 2673-2688.
    • (2010) Water Resour Manag , vol.24 , Issue.11 , pp. 2673-2688
    • Rezaeian Zadeh, M.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 28
    • 84879272559 scopus 로고    scopus 로고
    • Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions
    • doi:10.1007/s12517-011-0517-y
    • Rezaeian Zadeh M, Tabari H, Abghari H (2012) Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions. Arab J Geosci. doi: 10. 1007/s12517-011-0517-y.
    • (2012) Arab J Geosci
    • Rezaeian Zadeh, M.1    Tabari, H.2    Abghari, H.3
  • 30
    • 0025508354 scopus 로고
    • Entropy nets: from decision trees to neural networks
    • Sethi IK (1990) Entropy nets: from decision trees to neural networks. Proc IEEE 78(10): 1605-1613.
    • (1990) Proc IEEE , vol.78 , Issue.10 , pp. 1605-1613
    • Sethi, I.K.1
  • 32
    • 0037197571 scopus 로고    scopus 로고
    • A data driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer KP, Gosain AK, Ramasastri KS (2002) A data driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol Process 16(6): 1325-1330.
    • (2002) Hydrol Process , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 33
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson A (1999) Rainfall-runoff modeling using artificial neural networks. ASCE J Hydrol Eng 4(3): 232-239.
    • (1999) ASCE J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, A.2
  • 34
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar AS, Markus M (2000) Precipitation-runoff modeling using artificial neural networks and conceptual models. ASCE J Hydrol Eng 5(2): 156-161.
    • (2000) ASCE J Hydrol Eng , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 36
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. ASCE J Hydrol Eng 15(4): 275-283.
    • (2010) ASCE J Hydrol Eng , vol.15 , Issue.4 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.