메뉴 건너뛰기




Volumn 24, Issue 1, 2010, Pages 37-62

Rainfall-runoff modeling: Comparison of two approaches with different data requirements

Author keywords

Artificial neural network; Levenberg marquardt; Muskingum routing; Rainfall runoff modeling; Scs curve number method

Indexed keywords

ARTIFICIAL NEURAL NETWORK; LEVENBERG-MARQUARDT; MUSKINGUM ROUTING; RAINFALL-RUNOFF MODELING; SCS CURVE NUMBER;

EID: 77955276945     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-009-9436-z     Document Type: Article
Times cited : (62)

References (69)
  • 1
    • 28344455955 scopus 로고    scopus 로고
    • An artificial neural network model for generating hydrograph from hydro-meteorological parameters
    • doi:10.1016/j.jhydrol.2005.03.032
    • Ahmad S, Simonovic SP (2005) An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J Hydrol (Amst) 315(1/4):236-251. doi:10.1016/j.jhydrol.2005.03.032
    • (2005) J Hydrol (Amst) , vol.315 , Issue.1-4 , pp. 236-251
    • Ahmad, S.1    Simonovic, S.P.2
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-I: Preliminary concepts
    • ASCE Task Committee onApplication ofArtificial Neural Networks in Hydrology
    • ASCE Task Committee onApplication ofArtificial Neural Networks in Hydrology (2000a) Artificial neural networks in hydrology-I: preliminary concepts. J Hydrolog Eng 5(2):115-123
    • (2000) J Hydrolog Eng , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-II: Hydrologic applications
    • ASCE Task Committee onApplication ofArtificial Neural Networks in Hydrology
    • ASCE Task Committee onApplication ofArtificial Neural Networks in Hydrology (2000b)Artificial neural networks in hydrology-II: hydrologic applications. J Hydrolog Eng 5(2):124-137
    • (2000) J Hydrolog Eng , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0024774330 scopus 로고
    • Neural networks and principal components analysis: Learning from examples without local minima
    • doi:10.1016/0893-6080(89)90014-2
    • Baldi P, Hornik K (1989) Neural networks and principal components analysis: learning from examples without local minima. Neural Netw 2:53-58. doi:10.1016/0893-6080(89)90014-2
    • (1989) Neural Netw , vol.2 , pp. 53-58
    • Baldi, P.1    Hornik, K.2
  • 6
    • 84978565322 scopus 로고
    • Sensitivity of SCS models to curve number variation
    • Bondelid TR, McCuen RH, Jackson TJ (1982) Sensitivity of SCS models to curve number variation. Water Resour Bull 18(1):111-116
    • (1982) Water Resour Bull , vol.18 , Issue.1 , pp. 111-116
    • Bondelid, T.R.1    McCuen, R.H.2    Jackson, T.J.3
  • 7
    • 79957808808 scopus 로고
    • In: Proc., applications of advanced information technologies: effective management of natural resources. Am Soc Agric Engrs (ASAE), St. Joseph, Mich, USA, June 18-19, 1993
    • Chieng S, Luo J (1993) Application of GIS to peak flow estimation. In: Proc., applications of advanced information technologies: effective management of natural resources. Am Soc Agric Engrs (ASAE), St. Joseph, Mich, USA, June 18-19, 1993, pp 279-289
    • (1993) Application of GIS to Peak Flow Estimation , pp. 279-289
    • Chieng, S.1    Luo, J.2
  • 9
    • 0035396123 scopus 로고    scopus 로고
    • Simulation of a Costa Rica watershed: Resolution effects and fractals
    • Colby JD (2001) Simulation of a Costa Rica watershed: resolution effects and fractals. J Water Resour Plann Manag 127(4):261-270
    • (2001) J Water Resour Plann Manag , vol.127 , Issue.4 , pp. 261-270
    • Colby, J.D.1
  • 10
    • 0032829433 scopus 로고    scopus 로고
    • Prévision hydrologique par réseaux de neurones artificiels: État de l'art
    • Coulibaly P, Anctil F, Bobée B (1999) Prévision hydrologique par réseaux de neurones artificiels: état de l'art. Revue Canadienne de Génie Civil 26(3):293-304
    • (1999) Revue Canadienne De Génie Civil , vol.26 , Issue.3 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 11
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • doi:10.1016/S0022-1694(00)00214-6
    • Coulibaly P, Anctil F, Bobée B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol (Amst) 230:244-257. doi:10.1016/S0022-1694(00)00214-6
    • (2000) J Hydrol (Amst) , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 12
    • 0026308790 scopus 로고
    • Neural networks applications in hydrology and water resources engineering
    • Daniel TM (1991) Neural networks applications in hydrology and water resources engineering. Proc Int Hydrol Water Resour Symp 3:797-802
    • (1991) Proc Int Hydrol Water Resour Symp , vol.3 , pp. 797-802
    • Daniel, T.M.1
  • 13
    • 16544395272 scopus 로고    scopus 로고
    • Parameter estimation for Muskingum models
    • Das A (2004) Parameter estimation for Muskingum models. J Irrig Drain Eng 130(2):140-147
    • (2004) J Irrig Drain Eng , vol.130 , Issue.2 , pp. 140-147
    • Das, A.1
  • 14
    • 65749312127 scopus 로고
    • Run-off potential indices of watersheds in Tilaiya catchment (Bihar) through use of remote sensing and geographic information system
    • doi:10.1007/BF03001919
    • Das SN, Narula NK, Laurin R (1992) Run-off potential indices of watersheds in Tilaiya catchment (Bihar) through use of remote sensing and geographic information system. J Indian Soc Remote Sens 20(4):207-221. doi:10.1007/BF03001919
    • (1992) J Indian Soc Remote Sens , vol.20 , Issue.4 , pp. 207-221
    • Das, S.N.1    Narula, N.K.2    Laurin, R.3
  • 15
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson CW, Wilby RL (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol Sci J 43(1):47-66
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.L.2
  • 16
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural network
    • Dawson CW, Wilby RL (2001) Hydrological modeling using artificial neural network. Prog Phys Geogr 25(1):80-108
    • (2001) Prog Phys Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 17
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modeling: Trade-offs in hydrological state representation and model evaluation
    • de Vos NJ, Rientjes THM (2005) Constraints of artificial neural networks for rainfall-runoff modeling: trade-offs in hydrological state representation and model evaluation. Hydrol Earth Syst Sci 9(1):111-126
    • (2005) Hydrol Earth Syst Sci , vol.9 , Issue.1 , pp. 111-126
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 18
    • 0022511581 scopus 로고
    • Roughness coefficients for routing surface runoff
    • doi:10.1061/(ASCE)0733-9437(1986)112:1(39)
    • Engman ET (1986) Roughness coefficients for routing surface runoff. J IrrigDrain Eng 112(1):39-53. doi:10.1061/(ASCE)0733-9437(1986)112:1(39)
    • (1986) J IrrigDrain Eng , vol.112 , Issue.1 , pp. 39-53
    • Engman, E.T.1
  • 19
    • 0017933375 scopus 로고
    • Flood routing by the Muskingum method
    • doi:10.1016/0022-1694(78)90153-1
    • Gill MA (1978) Flood routing by the Muskingum method. J Hydrol (Amst) 36:353-363. doi:10.1016/0022-1694(78)90153-1
    • (1978) J Hydrol (Amst) , vol.36 , pp. 353-363
    • Gill, M.A.1
  • 20
    • 0029414079 scopus 로고
    • Urban watershed modeling using geographic information system
    • Greene RG, Cruise JF (1995) Urban watershed modeling using geographic information system. J Water Resour Plng Mgmt, ASCE 121(4):318-325
    • (1995) J Water Resour Plng Mgmt, ASCE , vol.121 , Issue.4 , pp. 318-325
    • Greene, R.G.1    Cruise, J.F.2
  • 21
    • 0028543366 scopus 로고
    • Training feed forward networks with theMarquardt algorithm
    • doi:10.1109/72.329697
    • Hagan MT, Menhaj MB (1994) Training feed forward networks with theMarquardt algorithm. IEEE Trans Neural Netw 5(6):989-993. doi:10.1109/72.329697
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 23
    • 0023291580 scopus 로고
    • A computerized data base for flood prediction modeling
    • Hill JM, Singh VP, Aminian H (1987) A computerized data base for flood prediction modeling. Water Resour Bull 23(1):21-27
    • (1987) Water Resour Bull , vol.23 , Issue.1 , pp. 21-27
    • Hill, J.M.1    Singh, V.P.2    Aminian, H.3
  • 24
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • doi:10.1029/95WR01955
    • Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10):2517-2530. doi:10.1029/95WR01955
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 26
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • doi:10.1029/2003WR002355
    • Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour Res 40(4):W04302. doi:10.1029/2003WR002355
    • (2004) Water Resour Res , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 27
    • 33750133210 scopus 로고    scopus 로고
    • Enhanced runoff curve numbermodel incorporating storm duration and a nonlinear Ia-S relation
    • Jain MK, Mishra SK, Babu PS, Venugopal K, Singh VP (2006) Enhanced runoff curve numbermodel incorporating storm duration and a nonlinear Ia-S relation. J Hydrol Eng 11(6):631-635
    • (2006) J Hydrol Eng , vol.11 , Issue.6 , pp. 631-635
    • Jain, M.K.1    Mishra, S.K.2    Babu, P.S.3    Venugopal, K.4    Singh, V.P.5
  • 28
    • 0034738493 scopus 로고    scopus 로고
    • Statistical modeling of daily streamflows using rainfall input and curve number technique
    • doi:10.1016/S0022-1694(00)00252-3
    • Kottegoda NT, Natale L, Raiteri E (2000) Statistical modeling of daily streamflows using rainfall input and curve number technique. J Hydrol (Amst) 234(3/4):170-186. doi:10.1016/S0022-1694(00)00252-3
    • (2000) J Hydrol (Amst) , vol.234 , Issue.3-4 , pp. 170-186
    • Kottegoda, N.T.1    Natale, L.2    Raiteri, E.3
  • 29
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Mater 2(2):164-168
    • (1944) Q Appl Mater , vol.2 , Issue.2 , pp. 164-168
    • Levenberg, K.1
  • 31
    • 4544273838 scopus 로고    scopus 로고
    • User's guide. Blackland Res. and Extension Center, Texas Agric. Experiment Station, Texas and Grassland, Soil and Water Res. USDA ARS, Texas
    • Luzio MD, Srinivasan R, Arnold JG, Neitsch SL (2002) ArcView interface for SWAT 2000. User's guide. Blackland Res. and Extension Center, Texas Agric. Experiment Station, Texas and Grassland, Soil and Water Res. USDA ARS, Texas
    • (2002) ArcView Interface For SWAT 2000
    • Luzio, M.D.1    Srinivasan, R.2    Arnold, J.G.3    Neitsch, S.L.4
  • 33
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • doi:10.1137/0111030
    • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. Soc Industr Appl Mater J Appl Mater 11:431-441. doi:10.1137/0111030
    • (1963) Soc Industr Appl Mater J Appl Mater , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 36
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns AW, Hall MJ (1996) Artificial neural networks as rainfall runoff models. Hydrol Sci J 41(3):399-417
    • (1996) Hydrol Sci J , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 37
    • 0033167438 scopus 로고    scopus 로고
    • Another look at SCS-CN method
    • Mishra SK, Singh VP (1999) Another look at SCS-CN method. J Hydrol Eng 4(3):257-264
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 257-264
    • Mishra, S.K.1    Singh, V.P.2
  • 38
    • 0025477971 scopus 로고
    • Limitations of multi-layer perceptron networks-steps towards genetic neural networks
    • doi:10.1016/0167-8191(90)90079-O
    • Mühlenbein H (1990) Limitations of multi-layer perceptron networks-steps towards genetic neural networks. Parallel Comput 14:249-260. doi:10.1016/0167-8191(90)90079-O
    • (1990) Parallel Comput , vol.14 , pp. 249-260
    • Mühlenbein, H.1
  • 39
    • 33749713887 scopus 로고
    • Applications of GIS to SCS procedure for design flood hydrographs
    • St. Joseph, Mich., USA, 12-13 December 198
    • Muzik I (1988) Applications of GIS to SCS procedure for design flood hydrographs. In: Proc., mod. agric., forest and rangeland hydrol., Am. Soc. Agric. Engrs. (ASAE), St. Joseph, Mich., USA, 12-13 December 1988, pp 494-500
    • (1988) Proc., Mod. Agric., Forest and Rangeland Hydrol., Am. Soc. Agric. Engrs. (ASAE) , vol.8 , pp. 494-500
    • Muzik, I.1
  • 40
    • 0013635115 scopus 로고
    • A note on the Muskingum flood routing method
    • doi:10.1029/JZ064i008p01053
    • Nash JE (1959) A note on the Muskingum flood routing method. J Geophys Res 64(8):1053-1056. doi:10.1029/JZ064i008p01053
    • (1959) J Geophys Res , vol.64 , Issue.8 , pp. 1053-1056
    • Nash, J.E.1
  • 41
    • 33751316466 scopus 로고    scopus 로고
    • Daily stream flow prediction capability of artificial neural networks as influenced by minimum air temperature data
    • Nayebi M, Khalili D, Amin S, Zand-Parsa S (2006) Daily stream flow prediction capability of artificial neural networks as influenced by minimum air temperature data. Biosys Eng 95(4):557-567
    • (2006) Biosys Eng , vol.95 , Issue.4 , pp. 557-567
    • Nayebi, M.1    Khalili, D.2    Amin, S.3    Zand-Parsa, S.4
  • 42
    • 33645197606 scopus 로고    scopus 로고
    • Soil and water assessment tool. Theoretical documentation, ver. 2000
    • Service (ARS), Texas and Blackland Res. Center, Texas Agric. Experiment Station, Texas
    • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool. Theoretical documentation, ver. 2000. Soil and Water Res. Laboratory, Agric. Res. Service (ARS), Texas and Blackland Res. Center, Texas Agric. Experiment Station, Texas
    • (2002) Soil and Water Res. Laboratory, Agric. Res
    • Neitsch, S.L.1    Arnold, J.G.2    Kiniry, J.R.3    Williams, J.R.4    King, K.W.5
  • 45
    • 0032937966 scopus 로고    scopus 로고
    • Geographic information system (GIS)-based spatially distributed model for runoff routing
    • doi:10.1029/1998WR900104
    • Olivera F, Maidment DR (1999) Geographic information system (GIS)-based spatially distributed model for runoff routing. Water Resour Res 35(4):1155-1164. doi:10.1029/1998WR900104
    • (1999) Water Resour Res , vol.35 , Issue.4 , pp. 1155-1164
    • Olivera, F.1    Maidment, D.R.2
  • 46
    • 0013635371 scopus 로고
    • Muskingum flood routing of upland streamflow
    • doi:10.1016/0022-1694(66)90079-5
    • Overton DE (1966) Muskingum flood routing of upland streamflow. J Hydrol (Amst) 4:185-200. doi:10.1016/0022-1694(66)90079-5
    • (1966) J Hydrol (Amst) , vol.4 , pp. 185-200
    • Overton, D.E.1
  • 47
    • 0029677636 scopus 로고    scopus 로고
    • Runoff curve number: Has it reached maturity?
    • Ponce VM, Hawkins RH (1996) Runoff curve number: has it reached maturity? J Hydrol Eng 1(1):11-19
    • (1996) J Hydrol Eng , vol.1 , Issue.1 , pp. 11-19
    • Ponce, V.M.1    Hawkins, R.H.2
  • 48
    • 0019115372 scopus 로고
    • Runoff synthesis using Landsat and SCS model
    • Ragan RM, Jackson TJ (1980) Runoff synthesis using Landsat and SCS model. J Hydraul Div 106(HY5):667-678
    • (1980) J Hydraul Div , vol.106 , Issue.HY5 , pp. 667-678
    • Ragan, R.M.1    Jackson, T.J.2
  • 49
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane river, India
    • Raghuwanshi NS, Singh R, Reddy LS (2006) Runoff and sediment yield modeling using artificial neural networks: upper Siwane river, India. J Hydrol Eng 11(1):71-79
    • (2006) J Hydrol Eng , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 50
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • doi:10.1016/j.jhydrol.2003.08.011
    • Rajurkar MP, Kothyari UC, Chaube UC (2004) Modeling of the daily rainfall-runoff relationship with artificial neural network. J Hydrol (Amst) 285:96-113. doi:10.1016/j.jhydrol.2003.08.011
    • (2004) J Hydrol (Amst) , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 51
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using artificial neural network
    • doi:10.1016/S0022-1694(98)00273-X
    • Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall-runoff model using artificial neural network. J Hydrol (Amst) 216:32-55. doi:10.1016/S0022-1694(98)00273-X
    • (1999) J Hydrol (Amst) , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 54
    • 0003956158 scopus 로고
    • SCS, Technical release 55 (TR-55), soil conservation service (SCS). USDA, Washington, D.C
    • SCS (1986) Urban hydrology for small watersheds. Technical release 55 (TR-55), soil conservation service (SCS). USDA, Washington, D.C., pp 2.5-2.8
    • (1986) Urban Hydrology For Small Watersheds , pp. 5-8
  • 55
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • doi:10.1016/S0022-1694(96)03330-6
    • Shamseldin AY (1997) Application of a neural network technique to rainfall-runoff modeling. J Hydrol (Amst) 199:272-294. doi:10.1016/S0022-1694(96)03330-6
    • (1997) J Hydrol (Amst) , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 56
    • 0030220483 scopus 로고    scopus 로고
    • Back-propagation is not efficient
    • doi:10.1016/ 0893-6080(95)00135-2
    • Sima S (1996) Back-propagation is not efficient. Neural Netw 9(6):1017-1023. doi:10.1016/ 0893-6080(95)00135-2
    • (1996) Neural Netw , vol.9 , Issue.6 , pp. 1017-1023
    • Sima, S.1
  • 57
    • 84978600323 scopus 로고
    • SCS runoff curve number estimates from Landsat data
    • Slack RB, Welch R (1980) SCS runoff curve number estimates from Landsat data. Water Resour Bull 16(5):887-893
    • (1980) Water Resour Bull , vol.16 , Issue.5 , pp. 887-893
    • Slack, R.B.1    Welch, R.2
  • 58
    • 0018455212 scopus 로고
    • Direct optimization of Muskingum routing coefficients-an extension to the paper by M.A. Gill (1978): 'Flood routing by the Muskingum method'
    • doi:10.1016/0022-1694(79)90115-X
    • Stephenson D (1979) Direct optimization of Muskingum routing coefficients-an extension to the paper by M.A. Gill (1978): 'Flood routing by the Muskingum method'. J Hydrol (Amst) 41:161-165. doi:10.1016/0022-1694(79)90115-X
    • (1979) J Hydrol (Amst) , vol.41 , pp. 161-165
    • Stephenson, D.1
  • 59
    • 0025477318 scopus 로고
    • Runoff volume estimation using GIS technique
    • Stuebe MM, Johnston DM (1990) Runoff volume estimation using GIS technique. Water Resour Bull 26(4):611-620
    • (1990) Water Resour Bull , vol.26 , Issue.4 , pp. 611-620
    • Stuebe, M.M.1    Johnston, D.M.2
  • 61
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur G, Singh VP (2006) ANN and fuzzy logic models for simulating event-based rainfall-runoff. J Hydrol Eng 132(12):1321-1330
    • (2006) J Hydrol Eng , vol.132 , Issue.12 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 62
    • 0026313185 scopus 로고
    • Hydrologic modeling for runoff determination: Remote sensing techniques
    • doi:10.1080/07900629108722510
    • Tiwari KN, Kumar P, Sebastian M, Pal DK (1991) Hydrologic modeling for runoff determination: remote sensing techniques. Int J Water Resour Dev 7(3):178-184. doi:10.1080/07900629108722510
    • (1991) Int J Water Resour Dev , vol.7 , Issue.3 , pp. 178-184
    • Tiwari, K.N.1    Kumar, P.2    Sebastian, M.3    Pal, D.K.4
  • 63
    • 0038054583 scopus 로고    scopus 로고
    • Watershed parameter extraction using GIS and remote sensing for hydrologic modeling
    • Tiwari KN, Kannan N, Singh R, Ghosh SK (1997) Watershed parameter extraction using GIS and remote sensing for hydrologic modeling. Asian Pac Remote Sens GIS J 10(1):43-52
    • (1997) Asian Pac Remote Sens GIS J , vol.10 , Issue.1 , pp. 43-52
    • Tiwari, K.N.1    Kannan, N.2    Singh, R.3    Ghosh, S.K.4
  • 64
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar SA, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4:232-239
    • (1999) J Hydrol Eng , vol.4 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 65
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • doi:10.1061/(ASCE)1084-0699(2000)5:2(156)
    • Tokar AS, Markus M (2000) Precipitation-runoff modeling using artificial neural networks and conceptual models. J Hydrol Eng 5(2):156-160. doi:10.1061/(ASCE)1084-0699(2000)5:2(156)
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 156-160
    • Tokar, A.S.1    Markus, M.2
  • 66
    • 0001825050 scopus 로고    scopus 로고
    • DEM based overland flow routing model
    • Wang M, Hjelmfelt AT (1998) DEM based overland flow routing model. J Hydrol Eng 3(1):1-7
    • (1998) J Hydrol Eng , vol.3 , Issue.1 , pp. 1-7
    • Wang, M.1    Hjelmfelt, A.T.2
  • 67
    • 1842359434 scopus 로고
    • Grid-based application of runoff curve number
    • White D (1988) Grid-based application of runoff curve number. J Water Resour Plann Manag 114(6):601-612
    • (1988) J Water Resour Plann Manag , vol.114 , Issue.6 , pp. 601-612
    • White, D.1
  • 68
    • 3342966977 scopus 로고    scopus 로고
    • ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps
    • doi:10.1016/j.envsoft.2004.03.001
    • Zhan X, Huang M (2004) ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps. Environ Model Softw 19(10):875-879. doi:10.1016/j.envsoft.2004.03.001
    • (2004) Environ Model Softw , vol.19 , Issue.10 , pp. 875-879
    • Zhan, X.1    Huang, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.