-
1
-
-
0017341656
-
Microbial ecology of the gastrointestinal tract
-
Savage, D.C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31: 107–133.
-
(1977)
Annu. Rev. Microbiol.
, vol.31
, pp. 107-133
-
-
Savage, D.C.1
-
3
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin, J., R. Li, J. Raes, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
-
4
-
-
33745594044
-
The gut flora as a forgotten organ
-
O'Hara, A.M. & F. Shanahan. 2006. The gut flora as a forgotten organ. EMBO Rep. 7: 688–693.
-
(2006)
EMBO Rep.
, vol.7
, pp. 688-693
-
-
O'Hara, A.M.1
Shanahan, F.2
-
6
-
-
80051856839
-
The human gut microbiome: ecology and recent evolutionary changes
-
Walter, J. & R.E. Ley. 2011. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65: 411–429.
-
(2011)
Annu. Rev. Microbiol.
, vol.65
, pp. 411-429
-
-
Walter, J.1
Ley, R.E.2
-
7
-
-
84928381097
-
Food, immunity, and the microbiome
-
Tilg, H. & A.R. Moschen. 2015. Food, immunity, and the microbiome. Gastroenterology 148: 1107–1119.
-
(2015)
Gastroenterology
, vol.148
, pp. 1107-1119
-
-
Tilg, H.1
Moschen, A.R.2
-
8
-
-
65649150743
-
Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls
-
Dicksved, J., M. Lindberg, M. Rosenquist, et al. 2009. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J. Med. Microbiol. 58: 509–516.
-
(2009)
J. Med. Microbiol.
, vol.58
, pp. 509-516
-
-
Dicksved, J.1
Lindberg, M.2
Rosenquist, M.3
-
9
-
-
84876110698
-
Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods
-
Delgado, S., R. Cabrera-Rubio, A. Mira, et al. 2013. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb. Ecol. 65: 763–772.
-
(2013)
Microb. Ecol.
, vol.65
, pp. 763-772
-
-
Delgado, S.1
Cabrera-Rubio, R.2
Mira, A.3
-
10
-
-
84880911975
-
A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets
-
Leimena, M.M., J. Ramiro-Garcia, M. Davids, et al. 2013. A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets. BMC Genomics 14: 530.
-
(2013)
BMC Genomics
, vol.14
, pp. 530
-
-
Leimena, M.M.1
Ramiro-Garcia, J.2
Davids, M.3
-
11
-
-
18944401261
-
Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD
-
Lepage, P., P. Seksik, M. Sutren, et al. 2005. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm. Bowel Dis. 11: 473–480.
-
(2005)
Inflamm. Bowel Dis.
, vol.11
, pp. 473-480
-
-
Lepage, P.1
Seksik, P.2
Sutren, M.3
-
12
-
-
35348857386
-
Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases
-
Frank, D.N., A.L. St Amand, R.A. Feldman, et al. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104: 13780–13785.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 13780-13785
-
-
Frank, D.N.1
St Amand, A.L.2
Feldman, R.A.3
-
13
-
-
70349233883
-
Towards the human intestinal microbiota phylogenetic core
-
Tap, J., S. Mondot, F. Levenez, et al. 2009. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11: 2574–2584.
-
(2009)
Environ. Microbiol.
, vol.11
, pp. 2574-2584
-
-
Tap, J.1
Mondot, S.2
Levenez, F.3
-
14
-
-
20544444045
-
Diversity of the human intestinal microbial flora
-
Eckburg, P.B., E.M. Bik, C.N. Bernstein, et al. 2005 Diversity of the human intestinal microbial flora. Science 308: 1635–1638.
-
(2005)
Science
, vol.308
, pp. 1635-1638
-
-
Eckburg, P.B.1
Bik, E.M.2
Bernstein, C.N.3
-
15
-
-
0021779934
-
Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats
-
Staley, J.T. & A. Konopka. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39: 321–346.
-
(1985)
Annu. Rev. Microbiol.
, vol.39
, pp. 321-346
-
-
Staley, J.T.1
Konopka, A.2
-
16
-
-
0032755259
-
Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut
-
Suau, A., R. Bonnet, M. Sutren, et al. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65: 4799–4807.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 4799-4807
-
-
Suau, A.1
Bonnet, R.2
Sutren, M.3
-
17
-
-
54349126970
-
High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota
-
Zoetendal, E.G., M. Rajilic-Stojanovic & W.M. de Vos. 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57: 1605–1615.
-
(2008)
Gut
, vol.57
, pp. 1605-1615
-
-
Zoetendal, E.G.1
Rajilic-Stojanovic, M.2
de Vos, W.M.3
-
19
-
-
84904890211
-
From meta-omics to causality: experimental models for human microbiome research
-
Fritz, J.V., M.S. Desai, P. Shah, et al. 2013. From meta-omics to causality: experimental models for human microbiome research. Microbiome 1: 14.
-
(2013)
Microbiome
, vol.1
, pp. 14
-
-
Fritz, J.V.1
Desai, M.S.2
Shah, P.3
-
20
-
-
0032192790
-
Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products
-
Handelsman, J., M.R. Rondon, S.F. Brady, et al. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245–R249.
-
(1998)
Chem. Biol.
, vol.5
, pp. R245-R249
-
-
Handelsman, J.1
Rondon, M.R.2
Brady, S.F.3
-
21
-
-
0033033720
-
Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus
-
Rondon, M.R., S.J. Raffel, R.M. Goodman & J. Handelsman. 1999. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc. Natl. Acad. Sci. U.S.A. 96: 6451–6455.
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 6451-6455
-
-
Rondon, M.R.1
Raffel, S.J.2
Goodman, R.M.3
Handelsman, J.4
-
22
-
-
84864106655
-
Functional metagenomic investigations of the human intestinal microbiota
-
Moore, A.M., C. Munck, M.O. Sommer & G. Dantas. 2011. Functional metagenomic investigations of the human intestinal microbiota. Front. Microbiol. 2: 188.
-
(2011)
Front. Microbiol.
, vol.2
, pp. 188
-
-
Moore, A.M.1
Munck, C.2
Sommer, M.O.3
Dantas, G.4
-
23
-
-
79951742914
-
Abundant oligonucleotides common to most bacteria
-
Davenport, C.F. & B. Tümmler. 2010. Abundant oligonucleotides common to most bacteria. PLoS One 5: e9841.
-
(2010)
PLoS One
, vol.5
-
-
Davenport, C.F.1
Tümmler, B.2
-
24
-
-
84871124415
-
A metagenomic insight into our gut's microbiome
-
Lepage, P., M.C. Leclerc, M. Joossens, et al. 2013. A metagenomic insight into our gut's microbiome. Gut 62: 146–158.
-
(2013)
Gut
, vol.62
, pp. 146-158
-
-
Lepage, P.1
Leclerc, M.C.2
Joossens, M.3
-
25
-
-
77958558890
-
Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut
-
Lakhdari, O., A. Cultrone, J. Tap, et al. 2010. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut. PLoS One 5: 1–10.
-
(2010)
PLoS One
, vol.5
, pp. 1-10
-
-
Lakhdari, O.1
Cultrone, A.2
Tap, J.3
-
26
-
-
84921550463
-
A robust and adaptable high throughput screening method to study host–microbiota interactions in the human intestine
-
de Wouters, T., F. Ledue, M. Nepelska, et al. 2014. A robust and adaptable high throughput screening method to study host–microbiota interactions in the human intestine. PLoS One 9: e105598.
-
(2014)
PLoS One
, vol.9
-
-
de Wouters, T.1
Ledue, F.2
Nepelska, M.3
-
27
-
-
78649270064
-
Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes
-
Tasse, L., J. Bercovici, S. Pizzut-Serin, et al. 2010. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res. 20: 1605–1612.
-
(2010)
Genome Res.
, vol.20
, pp. 1605-1612
-
-
Tasse, L.1
Bercovici, J.2
Pizzut-Serin, S.3
-
28
-
-
84884177595
-
Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria
-
Cecchini, D.A., E. Laville, S. Laguerre, et al. 2013. Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLoS One 8: e72766.
-
(2013)
PLoS One
, vol.8
-
-
Cecchini, D.A.1
Laville, E.2
Laguerre, S.3
-
29
-
-
79952754522
-
A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome
-
Gloux, K., O. Berteau, H. El Oumami, et al. 2011. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1): 4539–4546.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4539-4546
-
-
Gloux, K.1
Berteau, O.2
El Oumami, H.3
-
30
-
-
79959212998
-
Landscape of next-generation sequencing technologies
-
Niedringhaus, T.P., D. Milanova, M.B. Kerby, et al. 2011. Landscape of next-generation sequencing technologies. Anal. Chem. 83: 4327–4341.
-
(2011)
Anal. Chem.
, vol.83
, pp. 4327-4341
-
-
Niedringhaus, T.P.1
Milanova, D.2
Kerby, M.B.3
-
31
-
-
1542377296
-
Community structure and metabolism through reconstruction of microbial genomes from the environment
-
Tyson, G.W., J. Chapman, P. Hugenholtz, et al. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43.
-
(2004)
Nature
, vol.428
, pp. 37-43
-
-
Tyson, G.W.1
Chapman, J.2
Hugenholtz, P.3
-
32
-
-
84881548286
-
Computational meta'omics for microbial community studies
-
Segata, N., D. Boernigen, T.L. Tickle, et al. 2013. Computational meta'omics for microbial community studies. Mol. Syst. Biol. 9: 666.
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 666
-
-
Segata, N.1
Boernigen, D.2
Tickle, T.L.3
-
33
-
-
33744804299
-
Metagenomic analysis of the human distal gut microbiome
-
Gill, S.R., M. Pop, R.T. Deboy, et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355–1359.
-
(2006)
Science
, vol.312
, pp. 1355-1359
-
-
Gill, S.R.1
Pop, M.2
Deboy, R.T.3
-
34
-
-
38449088143
-
Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes
-
Kurokawa, K., T. Itoh, T. Kuwahara, et al. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 14: 169–181.
-
(2007)
DNA Res.
, vol.14
, pp. 169-181
-
-
Kurokawa, K.1
Itoh, T.2
Kuwahara, T.3
-
35
-
-
85027927719
-
Enterotypes of the human gut microbiome
-
Arumugam, M., J. Raes, E. Pelletier, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180.
-
(2011)
Nature
, vol.473
, pp. 174-180
-
-
Arumugam, M.1
Raes, J.2
Pelletier, E.3
-
36
-
-
80053618114
-
Linking long-term dietary patterns with gut microbial enterotypes
-
Wu, G.D., J. Chen, C. Hoffmann, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105–108.
-
(2011)
Science
, vol.334
, pp. 105-108
-
-
Wu, G.D.1
Chen, J.2
Hoffmann, C.3
-
37
-
-
84871633668
-
Gut microbial “enterotypes” become less clear-cut
-
Yong, E. 2012. Gut microbial “enterotypes” become less clear-cut. Nature. doi: 10.1038/nature.2012.10276.
-
(2012)
Nature
-
-
Yong, E.1
-
38
-
-
75349111298
-
Gut microbiota: changes throughout the lifespan from infancy to elderly
-
O'Toole, P.W. & M.J. Claesson. 2010. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int. Dairy J. 20: 281–291.
-
(2010)
Int. Dairy J.
, vol.20
, pp. 281-291
-
-
O'Toole, P.W.1
Claesson, M.J.2
-
40
-
-
84948461699
-
Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota
-
Vétizou, M., J.M. Pitt, R. Daillère, et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350: 1079–1084.
-
(2015)
Science
, vol.350
, pp. 1079-1084
-
-
Vétizou, M.1
Pitt, J.M.2
Daillère, R.3
-
41
-
-
41649114407
-
Microbial community gene expression in ocean surface waters
-
Frias-lopez, J., Y. Shi, G.W. Tyson, et al. 2008. Microbial community gene expression in ocean surface waters. Proc. Natl. Acad. Sci. U.S.A. 105: 3805–3810.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 3805-3810
-
-
Frias-lopez, J.1
Shi, Y.2
Tyson, G.W.3
-
42
-
-
77955963505
-
Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed
-
Booijink, C.C., J. Boekhorst, E.G. Zoetendal, et al. 2010. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl. Environ. Microbiol. 76: 5533–5540.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 5533-5540
-
-
Booijink, C.C.1
Boekhorst, J.2
Zoetendal, E.G.3
-
43
-
-
33845901507
-
Microbial ecology: human gut microbes associated with obesity
-
Ley, R.E., P.J. Turnbaugh, S. Klein & J.I. Gordon. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023.
-
(2006)
Nature
, vol.444
, pp. 1022-1023
-
-
Ley, R.E.1
Turnbaugh, P.J.2
Klein, S.3
Gordon, J.I.4
-
44
-
-
84901847186
-
Relating the metatranscriptome and metagenome of the human gut
-
Franzosa, E.A., X.C. Morgan, N. Segata, et al. 2014. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. U.S.A. 111: E2329–E2338.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E2329-E2338
-
-
Franzosa, E.A.1
Morgan, X.C.2
Segata, N.3
-
45
-
-
84955709661
-
Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults
-
Tap, J., J.-P. Furet, M. Bensaada, et al. 2015. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 17: 4954–4964.
-
(2015)
Environ. Microbiol.
, vol.17
, pp. 4954-4964
-
-
Tap, J.1
Furet, J.-P.2
Bensaada, M.3
-
46
-
-
58549089276
-
Shotgun metaproteomics of the human distal gut microbiota
-
Verberkmoes, N.C., A.L. Russell, M. Shah, et al. 2009. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3: 179–189.
-
(2009)
ISME J.
, vol.3
, pp. 179-189
-
-
Verberkmoes, N.C.1
Russell, A.L.2
Shah, M.3
-
47
-
-
0343376097
-
Difference gel electrophoresis: a single gel method for detecting changes in protein extracts
-
Unlü, M., M.E. Morgan & J.S. Minden. 1997. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071–2077.
-
(1997)
Electrophoresis
, vol.18
, pp. 2071-2077
-
-
Unlü, M.1
Morgan, M.E.2
Minden, J.S.3
-
48
-
-
84944152758
-
A decade of metaproteomics: where we stand and what the future holds
-
Wilmes, P., A. Heintz-Buschart & P.L. Bond. 2015. A decade of metaproteomics: where we stand and what the future holds. Proteomics 15: 3409–3417.
-
(2015)
Proteomics
, vol.15
, pp. 3409-3417
-
-
Wilmes, P.1
Heintz-Buschart, A.2
Bond, P.L.3
-
49
-
-
84855915896
-
Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions
-
Kolmeder, C.A., M. de Been, J. Nikkilä, et al. 2012. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7: e29913.
-
(2012)
PLoS One
, vol.7
-
-
Kolmeder, C.A.1
de Been, M.2
Nikkilä, J.3
-
50
-
-
84944162739
-
Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case
-
Young, J.C., C. Pan, R.M. Adams, et al. 2015. Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case. Proteomics 15: 3463–3473.
-
(2015)
Proteomics
, vol.15
, pp. 3463-3473
-
-
Young, J.C.1
Pan, C.2
Adams, R.M.3
-
51
-
-
0242607632
-
Parallel analysis of transcript and metabolic profiles: a new approach in systems biology
-
Urbanczyk-Wochniak, E., A. Luedemann, J. Kopka, et al. 2003. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 4: 989–993.
-
(2003)
EMBO Rep.
, vol.4
, pp. 989-993
-
-
Urbanczyk-Wochniak, E.1
Luedemann, A.2
Kopka, J.3
-
52
-
-
84861978076
-
Host–gut microbiota metabolic interactions
-
Nicholson, J.K., E. Holmes, J. Kinross, et al. 2012. Host–gut microbiota metabolic interactions. Science 336: 1262–1267.
-
(2012)
Science
, vol.336
, pp. 1262-1267
-
-
Nicholson, J.K.1
Holmes, E.2
Kinross, J.3
-
53
-
-
84863920287
-
Microbial interactions: from networks to models
-
Faust, K. & J. Raes. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10: 538–550.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 538-550
-
-
Faust, K.1
Raes, J.2
-
54
-
-
84929297936
-
Dynamics and stabilization of the human gut microbiome during the first year of life
-
Bäckhed, F., J. Roswall, Y. Peng, et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17: 852.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 852
-
-
Bäckhed, F.1
Roswall, J.2
Peng, Y.3
-
55
-
-
84910096224
-
Human genetics shape the gut microbiome
-
Goodrich, J.K., J.L. Waters, A.C. Poole, et al. 2014. Human genetics shape the gut microbiome. Cell 159: 789–799.
-
(2014)
Cell
, vol.159
, pp. 789-799
-
-
Goodrich, J.K.1
Waters, J.L.2
Poole, A.C.3
-
56
-
-
84864722033
-
Gut microbiota composition correlates with diet and health in the elderly
-
Claesson, M.J., I.B. Jeffery, S. Conde, et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184.
-
(2012)
Nature
, vol.488
, pp. 178-184
-
-
Claesson, M.J.1
Jeffery, I.B.2
Conde, S.3
-
58
-
-
84858153337
-
Role of the microbiota in inflammatory bowel diseases
-
Nagalingam, N.A. & S.V. Lynch. 2012. Role of the microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 18: 968–984.
-
(2012)
Inflamm. Bowel Dis.
, vol.18
, pp. 968-984
-
-
Nagalingam, N.A.1
Lynch, S.V.2
-
59
-
-
84896092821
-
The treatment-naive microbiome in new-onset Crohn's disease
-
Gevers, D., S. Kugathasan, L.A. Denson, et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15: 382–392.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 382-392
-
-
Gevers, D.1
Kugathasan, S.2
Denson, L.A.3
-
60
-
-
84908554334
-
Bacterial protein signals are associated with Crohn's disease
-
Juste, C., D.P. Kreil, C. Beauvallet, et al. 2014. Bacterial protein signals are associated with Crohn's disease. Gut 63: 1566–1577.
-
(2014)
Gut
, vol.63
, pp. 1566-1577
-
-
Juste, C.1
Kreil, D.P.2
Beauvallet, C.3
-
61
-
-
33847378014
-
Rapid and noninvasive metabonomic characterization of inflammatory bowel disease
-
Marchesi, J.R., E. Holmes, F. Khan, et al. 2007. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 6: 546–551.
-
(2007)
J. Proteome Res.
, vol.6
, pp. 546-551
-
-
Marchesi, J.R.1
Holmes, E.2
Khan, F.3
-
62
-
-
68149099597
-
Metabolomics reveals metabolic biomarkers of Crohn's disease
-
Jansson, J., B. Willing, M. Lucio, et al. 2009. Metabolomics reveals metabolic biomarkers of Crohn's disease. PLoS One 4: e6386.
-
(2009)
PLoS One
, vol.4
-
-
Jansson, J.1
Willing, B.2
Lucio, M.3
-
63
-
-
84929073100
-
Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals
-
Bjerrum, J.T., Y. Wang, F. Hao, et al. 2015. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics 11: 122–133.
-
(2015)
Metabolomics
, vol.11
, pp. 122-133
-
-
Bjerrum, J.T.1
Wang, Y.2
Hao, F.3
-
66
-
-
79959467647
-
Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans
-
Jumpertz, R., D.S. Le, P.J. Turnbaugh, et al. 2011. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94: 58–65.
-
(2011)
Am. J. Clin. Nutr.
, vol.94
, pp. 58-65
-
-
Jumpertz, R.1
Le, D.S.2
Turnbaugh, P.J.3
-
67
-
-
56549122798
-
Human colonic microbiota associated with diet, obesity and weight loss
-
Lond
-
Duncan, S.H., G.E. Lobley, G. Holtrop, et al. 2008. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. (Lond.) 32: 1720–1724.
-
(2008)
Int. J. Obes.
, vol.32
, pp. 1720-1724
-
-
Duncan, S.H.1
Lobley, G.E.2
Holtrop, G.3
-
68
-
-
73949137604
-
Microbiota and SCFA in lean and overweight healthy subjects
-
Schwiertz, A., D. Taras, K. Schäfer, et al. 2010. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18: 190–195.
-
(2010)
Obesity (Silver Spring)
, vol.18
, pp. 190-195
-
-
Schwiertz, A.1
Taras, D.2
Schäfer, K.3
-
69
-
-
84883057637
-
Dietary intervention impact on gut microbial gene richness
-
Cotillard, A., S.P. Kennedy, L.C. Kong, et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500: 585–588.
-
(2013)
Nature
, vol.500
, pp. 585-588
-
-
Cotillard, A.1
Kennedy, S.P.2
Kong, L.C.3
-
70
-
-
84883110880
-
Richness of human gut microbiome correlates with metabolic markers
-
Le Chatelier, E., T. Nielsen, J. Qin, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541–546.
-
(2013)
Nature
, vol.500
, pp. 541-546
-
-
Le Chatelier, E.1
Nielsen, T.2
Qin, J.3
-
71
-
-
84856011484
-
Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease
-
Greenblum, S., P.J. Turnbaugh & E. Borenstein. 2012. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc. Natl. Acad. Sci. U.S.A. 109: 594–599.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 594-599
-
-
Greenblum, S.1
Turnbaugh, P.J.2
Borenstein, E.3
-
72
-
-
84867074831
-
A metagenome-wide association study of gut microbiota in type 2 diabetes
-
Qin, J., Y. Li, Z. Cai, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55–60.
-
(2012)
Nature
, vol.490
, pp. 55-60
-
-
Qin, J.1
Li, Y.2
Cai, Z.3
-
73
-
-
84944147974
-
Colonic metaproteomic signatures of active bacteria and the host in obesity
-
Kolmeder, C.A., J. Ritari, F.J. Verdam, et al. 2015. Colonic metaproteomic signatures of active bacteria and the host in obesity. Proteomics 15: 3544–3552.
-
(2015)
Proteomics
, vol.15
, pp. 3544-3552
-
-
Kolmeder, C.A.1
Ritari, J.2
Verdam, F.J.3
-
74
-
-
77953611756
-
Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype
-
Lond
-
Calvani, R., A. Miccheli, G. Capuani, et al. 2010. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int. J. Obes. (Lond.) 34: 1095–1098.
-
(2010)
Int. J. Obes.
, vol.34
, pp. 1095-1098
-
-
Calvani, R.1
Miccheli, A.2
Capuani, G.3
-
75
-
-
43749087841
-
Human metabolic phenotype diversity and its association with diet and blood pressure
-
Holmes, E., R.L. Loo, J. Stamler, et al. 2008. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453: 396–400.
-
(2008)
Nature
, vol.453
, pp. 396-400
-
-
Holmes, E.1
Loo, R.L.2
Stamler, J.3
-
76
-
-
84893013094
-
High-fat diet alters gut microbiota physiology in mice
-
Daniel, H., A.M. Gholami, D. Berry, et al. 2013. High-fat diet alters gut microbiota physiology in mice. ISME J. 8: 295–308.
-
(2013)
ISME J.
, vol.8
, pp. 295-308
-
-
Daniel, H.1
Gholami, A.M.2
Berry, D.3
-
77
-
-
84864099736
-
Early-life gut microbiota under physiological and pathological conditions: the central role of combined meta-omics-based approaches
-
Del Chierico, F., P. Vernocchi, L. Bonizzi, et al. 2012. Early-life gut microbiota under physiological and pathological conditions: the central role of combined meta-omics-based approaches. J. Proteomics 75: 4580–4587.
-
(2012)
J. Proteomics
, vol.75
, pp. 4580-4587
-
-
Del Chierico, F.1
Vernocchi, P.2
Bonizzi, L.3
|