메뉴 건너뛰기




Volumn 7, Issue 28, 2016, Pages 44310-44321

IHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC

Author keywords

General PseAAC; Hydroxylysine; Hydroxyproline; PTMs; Sequence coupling model

Indexed keywords

HYDROXYLYSINE; HYDROXYPROLINE; PROTEIN;

EID: 84978634483     PISSN: None     EISSN: 19492553     Source Type: Journal    
DOI: 10.18632/oncotarget.10027     Document Type: Article
Times cited : (157)

References (123)
  • 1
    • 53849096006 scopus 로고    scopus 로고
    • The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens
    • Krane SM. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids. 2008; 35:703-710.
    • (2008) Amino Acids , vol.35 , pp. 703-710
    • Krane, S.M.1
  • 2
    • 44449145549 scopus 로고    scopus 로고
    • How stable is a collagen triple helix? An ab initio study on various collagen and beta-sheet forming sequences
    • PálfiVK, András P. How stable is a collagen triple helix? An ab initio study on various collagen and beta-sheet forming sequences. J Comput Chem 2008; 29:1374-1386.
    • (2008) J Comput Chem , vol.29 , pp. 1374-1386
    • Pálfi, V.K.1    András, P.2
  • 3
    • 11444267454 scopus 로고    scopus 로고
    • Deregulation of collagen metabolism in human stomach cancer
    • Guszczyn T, Sobolewski K. Deregulation of collagen metabolism in human stomach cancer. Pathobiology. 2004; 71:308-313.
    • (2004) Pathobiology , vol.71 , pp. 308-313
    • Guszczyn, T.1    Sobolewski, K.2
  • 4
    • 33746798088 scopus 로고    scopus 로고
    • A preliminary study on antimetastatic activity of Thuja occidentalis L. in mice model
    • Sunila ES, Kuttan G. A preliminary study on antimetastatic activity of Thuja occidentalis L. in mice model. Immunopharmacol. Immunotoxicol. 2006; 28:269-280.
    • (2006) Immunopharmacol. Immunotoxicol , vol.28 , pp. 269-280
    • Sunila, E.S.1    Kuttan, G.2
  • 5
    • 42149120728 scopus 로고    scopus 로고
    • Anti-metastatic effect of Biophytum sensitivum is exerted through its cytokine and immunomodulatory activity and its regulatory effect on the activation and nuclear translocation of transcription factors in B16F-10 melanoma cells
    • Chandrasekharan G, Girija K. Anti-metastatic effect of Biophytum sensitivum is exerted through its cytokine and immunomodulatory activity and its regulatory effect on the activation and nuclear translocation of transcription factors in B16F-10 melanoma cells. J Exp Ther Oncol. 2008; 7:325-326.
    • (2008) J Exp Ther Oncol , vol.7 , pp. 325-326
    • Chandrasekharan, G.1    Girija, K.2
  • 6
    • 84934436741 scopus 로고    scopus 로고
    • Lysine Hydroxylation and Crosslinking of Collagen
    • Yamauchi M, Shiiba M. Lysine Hydroxylation and Crosslinking of Collagen. Methods Mol Biol. 2008; 446:277-290.
    • (2008) Methods Mol Biol , vol.446 , pp. 277-290
    • Yamauchi, M.1    Shiiba, M.2
  • 7
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
    • Chou KC. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J Theor Biol. 2011; 273:236-247.
    • (2011) J Theor Biol , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 9
    • 0030049315 scopus 로고    scopus 로고
    • Review: Prediction of human immunodeficiency virus protease cleavage sites in proteins
    • Chou KC. Review: Prediction of human immunodeficiency virus protease cleavage sites in proteins. Anal Biochem. 1996; 233:1-14.
    • (1996) Anal Biochem , vol.233 , pp. 1-14
    • Chou, K.C.1
  • 10
    • 84899856397 scopus 로고    scopus 로고
    • iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
    • Xu Y, Wen X, Shao XJ, Deng NY. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci. 2014; 15:7594-7610.
    • (2014) Int J Mol Sci , vol.15 , pp. 7594-7610
    • Xu, Y.1    Wen, X.2    Shao, X.J.3    Deng, N.Y.4
  • 11
    • 84962865637 scopus 로고    scopus 로고
    • iACP: a sequence-based tool for identifying anticancer peptides
    • Chen W, Ding H, Feng P, Lin H, Chou KC. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget. 2016; 7:16895-16909. doi: 10.18632/oncotarget.7815.
    • (2016) Oncotarget , vol.7 , pp. 16895-16909
    • Chen, W.1    Ding, H.2    Feng, P.3    Lin, H.4    Chou, K.C.5
  • 13
    • 85000869394 scopus 로고    scopus 로고
    • iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets
    • Jia J, Liu Z, Xiao X. iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets. Molecules. 2016; 21:95.
    • (2016) Molecules , vol.21 , pp. 95
    • Jia, J.1    Liu, Z.2    Xiao, X.3
  • 14
    • 84961384421 scopus 로고    scopus 로고
    • iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequencecoupling effects into pseudo components and optimizing imbalanced training dataset
    • Jia J, Liu Z, Xiao X, Liu B. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequencecoupling effects into pseudo components and optimizing imbalanced training dataset. Anal Biochem. 2016; 497:48-56.
    • (2016) Anal Biochem , vol.497 , pp. 48-56
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4
  • 15
    • 84957073578 scopus 로고    scopus 로고
    • pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach
    • Jia J, Liu Z, Xiao X. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol. 2016; 394:223-230.
    • (2016) J Theor Biol , vol.394 , pp. 223-230
    • Jia, J.1    Liu, Z.2    Xiao, X.3
  • 16
    • 84973637727 scopus 로고    scopus 로고
    • iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC
    • Jia J, Liu Z, Xiao X, Liu B, Chou KC. iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget. 2016; doi:10.18632/oncotarget.9148.
    • (2016) Oncotarget
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4    Chou, K.C.5
  • 17
    • 84954388556 scopus 로고    scopus 로고
    • iMiRNA-PseDPC: microRNA precursor identification with a pseudo distancepair composition approach
    • Liu B, Fang L, Liu F, Wang X. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distancepair composition approach. J Biomol Struct Dyn. 2016; 34:223-235.
    • (2016) J Biomol Struct Dyn , vol.34 , pp. 223-235
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4
  • 18
    • 84962263478 scopus 로고    scopus 로고
    • iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
    • Liu B, Fang L, Long R, Lan X. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics. 2016; 32:362-389.
    • (2016) Bioinformatics , vol.32 , pp. 362-389
    • Liu, B.1    Fang, L.2    Long, R.3    Lan, X.4
  • 19
    • 84983353017 scopus 로고    scopus 로고
    • iDHS-EL: Identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an en-semble learning framework
    • Liu B, Long R. iDHS-EL: Identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an en-semble learning framework. Bioinformatics. 2016; doi:10.1093/bioinformatics/btw186.
    • (2016) Bioinformatics
    • Liu, B.1    Long, R.2
  • 20
    • 84956829573 scopus 로고    scopus 로고
    • pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physicalchemical properties
    • Liu Z, Xiao X, Yu DJ, Jia J. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physicalchemical properties. Anal Biochem. 2016; 497:60-67.
    • (2016) Anal Biochem , vol.497 , pp. 60-67
    • Liu, Z.1    Xiao, X.2    Yu, D.J.3    Jia, J.4
  • 21
    • 84969836704 scopus 로고    scopus 로고
    • iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory
    • Qiu WR, Sun BQ, Xiao X, Xu D. iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Molecular Informatics. 2016; doi:10.1002/minf.201600010.
    • (2016) Molecular Informatics
    • Qiu, W.R.1    Sun, B.Q.2    Xiao, X.3    Xu, D.4
  • 22
    • 84978664062 scopus 로고    scopus 로고
    • iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
    • Qiu WR, Xiao X, Xu ZH, Chou KC. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget. 2016. doi: 10.18632/oncotarget.9987
    • (2016) Oncotarget
    • Qiu, W.R.1    Xiao, X.2    Xu, Z.H.3    Chou, K.C.4
  • 23
    • 84973610882 scopus 로고    scopus 로고
    • iROS-gPseKNC: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition
    • Xiao X, Ye HX, Liu Z, Jia JH, Chou KC. iROS-gPseKNC: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition. Oncotarget. 2016; doi:10.18632/oncotarget.9057.
    • (2016) Oncotarget
    • Xiao, X.1    Ye, H.X.2    Liu, Z.3    Jia, J.H.4    Chou, K.C.5
  • 24
    • 0027219970 scopus 로고
    • A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins
    • Chou KC. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem. 1993; 268:16938-16948.
    • (1993) J Biol Chem , vol.268 , pp. 16938-16948
    • Chou, K.C.1
  • 25
    • 0343315943 scopus 로고
    • Graph theory of enzyme kinetics: 1. Steady-state reaction system
    • Jiang SP, Liu WM, Fee CH. Graph theory of enzyme kinetics: 1. Steady-state reaction system. Scientia Sinica. 1979; 22:341-358.
    • (1979) Scientia Sinica , vol.22 , pp. 341-358
    • Jiang, S.P.1    Liu, W.M.2    Fee, C.H.3
  • 27
    • 0019021450 scopus 로고
    • Graphical rules for enzyme-catalyzed rate laws
    • Forsen S. Graphical rules for enzyme-catalyzed rate laws. Biochem J. 1980; 187:829-835.
    • (1980) Biochem J , vol.187 , pp. 829-835
    • Forsen, S.1
  • 28
    • 0019250029 scopus 로고
    • A new schematic method in enzyme kinetics
    • Chou KC. A new schematic method in enzyme kinetics. Eur J Biochem. 1980; 113:195-198.
    • (1980) Eur J Biochem , vol.113 , pp. 195-198
    • Chou, K.C.1
  • 29
    • 0019413602 scopus 로고
    • Graphical rules for non-steady state enzyme kinetics
    • Liu WM. Graphical rules for non-steady state enzyme kinetics. J Theor Biol. 1981; 91:637-654.
    • (1981) J Theor Biol , vol.91 , pp. 637-654
    • Liu, W.M.1
  • 30
    • 0019885786 scopus 로고
    • Two new schematic rules for rate laws of enzymecatalyzed reactions
    • Chou KC. Two new schematic rules for rate laws of enzymecatalyzed reactions. J Theor Biol. 1981; 89:581-592.
    • (1981) J Theor Biol , vol.89 , pp. 581-592
    • Chou, K.C.1
  • 31
    • 0021764092 scopus 로고
    • An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways
    • Zhou GP, Deng MH. An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J. 1984; 222:169-176.
    • (1984) Biochem J , vol.222 , pp. 169-176
    • Zhou, G.P.1    Deng, M.H.2
  • 32
    • 70349613231 scopus 로고    scopus 로고
    • FoldRate: A web-server for predicting protein folding rates from primary sequence
    • Chou KC, Shen HB. FoldRate: A web-server for predicting protein folding rates from primary sequence. The Open Bioinformatics Journal. 2009; 3:31-50
    • (2009) The Open Bioinformatics Journal , vol.3 , pp. 31-50
    • Chou, K.C.1    Shen, H.B.2
  • 33
    • 69949110263 scopus 로고    scopus 로고
    • Prediction of protein folding rates from primary sequence by fusing multiple sequential features
    • Shen HB, Song JN. Prediction of protein folding rates from primary sequence by fusing multiple sequential features. J Biomed Sci Eng. (JBiSE). 2009; 2: 136-143.
    • (2009) J Biomed Sci Eng. (JBiSE) , vol.2 , pp. 136-143
    • Shen, H.B.1    Song, J.N.2
  • 40
    • 0028071544 scopus 로고
    • Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases
    • Kezdy FJ, Reusser F. Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem. 1994; 221:217-230.
    • (1994) Anal Biochem , vol.221 , pp. 217-230
    • Kezdy, F.J.1    Reusser, F.2
  • 41
    • 0343751815 scopus 로고
    • Graphical rules of steady-state reaction systems
    • Forsen S. Graphical rules of steady-state reaction systems. Can J Chem. 1981; 59:737-755.
    • (1981) Can J Chem , vol.59 , pp. 737-755
    • Forsen, S.1
  • 42
    • 77952868004 scopus 로고    scopus 로고
    • Graphic rule for drug metabolism systems
    • Chou KC. Graphic rule for drug metabolism systems. Curr Drug Metab. 2010; 11:369-378.
    • (2010) Curr Drug Metab , vol.11 , pp. 369-378
    • Chou, K.C.1
  • 43
    • 79960604768 scopus 로고    scopus 로고
    • The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism
    • Zhou GP. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J Theor Biol. 2011; 284:142-148.
    • (2011) J Theor Biol , vol.284 , pp. 142-148
    • Zhou, G.P.1
  • 44
    • 0027054450 scopus 로고
    • Diagrammatization of codon usage in 339 HIV proteins and its biological implication
    • Chou KC, Zhang CT. Diagrammatization of codon usage in 339 HIV proteins and its biological implication. AIDS AIDS Res Hum Retroviruses. 1992; 8:1967-1976.
    • (1992) AIDS AIDS Res Hum Retroviruses , vol.8 , pp. 1967-1976
    • Chou, K.C.1    Zhang, C.T.2
  • 45
    • 0027312593 scopus 로고
    • Graphic analysis of codon usage strategy in 1490 human proteins
    • Zhang CT. Graphic analysis of codon usage strategy in 1490 human proteins. J Protein Chem. 1993; 12:329-335.
    • (1993) J Protein Chem , vol.12 , pp. 329-335
    • Zhang, C.T.1
  • 46
    • 0028237028 scopus 로고
    • Analysis of codon usage in 1562 E. Coli protein coding sequences
    • Zhang CT. Analysis of codon usage in 1562 E. Coli protein coding sequences. J Mol Biol. 1994; 238:1-8.
    • (1994) J Mol Biol , vol.238 , pp. 1-8
    • Zhang, C.T.1
  • 47
    • 77955673069 scopus 로고    scopus 로고
    • 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids
    • Wu ZC, Xiao X. 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids. J Theor Biol. 2010; 267:29-34.
    • (2010) J Theor Biol , vol.267 , pp. 29-34
    • Wu, Z.C.1    Xiao, X.2
  • 48
    • 33344460430 scopus 로고    scopus 로고
    • A probability cellular automaton model for hepatitis B viral infections
    • Xiao X, Shao SH. A probability cellular automaton model for hepatitis B viral infections. Biochem Biophys Res Comm. 2006; 342:605-610.
    • (2006) Biochem Biophys Res Comm , vol.342 , pp. 605-610
    • Xiao, X.1    Shao, S.H.2
  • 49
    • 20344364176 scopus 로고    scopus 로고
    • An Application of Gene Comparative Image for Predicting the Effect on Replication Ratio by HBV Virus Gene Missense Mutation
    • Xiao X, Shao S, Ding Y, Huang Z. An Application of Gene Comparative Image for Predicting the Effect on Replication Ratio by HBV Virus Gene Missense Mutation. J Theor Biol. 2005; 235:555-565.
    • (2005) J Theor Biol , vol.235 , pp. 555-565
    • Xiao, X.1    Shao, S.2    Ding, Y.3    Huang, Z.4
  • 50
    • 15244357858 scopus 로고    scopus 로고
    • Using cellular automata to generate Image representation for biological sequences
    • Xiao X, Shao S, Ding Y, Huang Z. Using cellular automata to generate Image representation for biological sequences. Amino Acids. 2005; 28:29-35.
    • (2005) Amino Acids , vol.28 , pp. 29-35
    • Xiao, X.1    Shao, S.2    Ding, Y.3    Huang, Z.4
  • 51
    • 33646023117 scopus 로고    scopus 로고
    • An Introduction to ROC Analysis
    • Fawcett JA. An Introduction to ROC Analysis. Pattern Recognition Letters. 2005; 27:861-874.
    • (2005) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, J.A.1
  • 53
    • 0031149431 scopus 로고    scopus 로고
    • Prediction of beta-turns in proteins by 1-4 and 2-3 correlation model
    • Zhang CT. Prediction of beta-turns in proteins by 1-4 and 2-3 correlation model. Biopolymers. 1997; 41:673-702.
    • (1997) Biopolymers , vol.41 , pp. 673-702
    • Zhang, C.T.1
  • 54
    • 0031542497 scopus 로고    scopus 로고
    • Prediction and classification of alpha-turn types
    • Chou KC. Prediction and classification of alpha-turn types. Biopolymers. 1997; 42:837-853.
    • (1997) Biopolymers , vol.42 , pp. 837-853
    • Chou, K.C.1
  • 55
    • 0034327349 scopus 로고    scopus 로고
    • Review: Prediction of tight turns and their types in proteins
    • Chou KC. Review: Prediction of tight turns and their types in proteins. Anal Biochem. 2000; 286:1-16.
    • (2000) Anal Biochem , vol.286 , pp. 1-16
    • Chou, K.C.1
  • 56
    • 0029076524 scopus 로고
    • A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase
    • Chou KC. A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase. Protein Sci. 1995; 4:1365-1383.
    • (1995) Protein Sci , vol.4 , pp. 1365-1383
    • Chou, K.C.1
  • 57
    • 0028181020 scopus 로고
    • An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins
    • Zhang CT. An alternate-subsite-coupled model for predicting HIV protease cleavage sites in proteins. Protein Eng. 1993; 7:65-73.
    • (1993) Protein Eng , vol.7 , pp. 65-73
    • Zhang, C.T.1
  • 58
    • 0035030201 scopus 로고    scopus 로고
    • Using subsite coupling to predict signal peptides
    • Chou KC. Using subsite coupling to predict signal peptides. Protein Eng. 2001; 14:75-79.
    • (2001) Protein Eng , vol.14 , pp. 75-79
    • Chou, K.C.1
  • 59
    • 34247544233 scopus 로고    scopus 로고
    • Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides
    • Chou KC, Shen HB. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Comm (BBRC). 2007; 357: 633-640.
    • (2007) Biochem Biophys Res Comm (BBRC) , vol.357 , pp. 633-640
    • Chou, K.C.1    Shen, H.B.2
  • 60
    • 34748902270 scopus 로고    scopus 로고
    • Signal-3L: a 3-layer approach for predicting signal peptide
    • Shen HB. Signal-3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Comm (BBRC). 2007; 363:297-303.
    • (2007) Biochem Biophys Res Comm (BBRC) , vol.363 , pp. 297-303
    • Shen, H.B.1
  • 61
    • 0035748859 scopus 로고    scopus 로고
    • Prediction of signal peptides using scaled window
    • Chou KC. Prediction of signal peptides using scaled window. Peptides. 2001; 22:1973-1979.
    • (2001) Peptides , vol.22 , pp. 1973-1979
    • Chou, K.C.1
  • 62
    • 84905982402 scopus 로고    scopus 로고
    • iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu Y, Wen X, Wen LS, Wu LY. iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS ONE. 2014; 9:e105018.
    • (2014) PLoS ONE , vol.9
    • Xu, Y.1    Wen, X.2    Wen, L.S.3    Wu, L.Y.4
  • 63
    • 84902162941 scopus 로고    scopus 로고
    • iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach
    • Qiu WR, Xiao X, Lin WZ. iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach. Biomed Res Int (BMRI). 2014; 2014:947416.
    • (2014) Biomed Res Int (BMRI) , vol.2014
    • Qiu, W.R.1    Xiao, X.2    Lin, W.Z.3
  • 64
    • 84928722799 scopus 로고    scopus 로고
    • iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
    • Jia J, Liu Z, Xiao X. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol. 2015; 377:47-56.
    • (2015) J Theor Biol , vol.377 , pp. 47-56
    • Jia, J.1    Liu, Z.2    Xiao, X.3
  • 65
    • 84981217089 scopus 로고    scopus 로고
    • Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC)
    • Jia J, Liu Z, Xiao X. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC). J Biomol Struct. Dyn. 2015; doi:10.1080/07391102.2015.1095116.
    • (2015) J Biomol Struct. Dyn
    • Jia, J.1    Liu, Z.2    Xiao, X.3
  • 66
    • 34548606295 scopus 로고    scopus 로고
    • Review: Recent progresses in protein subcellular location prediction
    • Chou KC, Shen HB. Review: Recent progresses in protein subcellular location prediction. Anal Biochem. 2007; 370:1-16.
    • (2007) Anal Biochem , vol.370 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 67
    • 84926619444 scopus 로고    scopus 로고
    • Impacts of bioinformatics to medicinal chemistry
    • Chou KC. Impacts of bioinformatics to medicinal chemistry. Med. Chem. 2015; 11:218-234.
    • (2015) Med. Chem , vol.11 , pp. 218-234
    • Chou, K.C.1
  • 69
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • Chou KC. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 2005; 21:10-19.
    • (2005) Bioinformatics , vol.21 , pp. 10-19
    • Chou, K.C.1
  • 70
    • 84859932176 scopus 로고    scopus 로고
    • PseAAC-Builder: A crossplatform stand-alone program for generating various special Chou's pseudo-amino acid compositions
    • Du P, Wang X, Xu C, Gao Y. PseAAC-Builder: A crossplatform stand-alone program for generating various special Chou's pseudo-amino acid compositions. Anal Biochem. 2012; 425:117-119.
    • (2012) Anal Biochem , vol.425 , pp. 117-119
    • Du, P.1    Wang, X.2    Xu, C.3    Gao, Y.4
  • 71
    • 84875576158 scopus 로고    scopus 로고
    • propy: a tool to generate various modes of Chou's PseAAC
    • Cao DS, Xu QS, Liang YZ. propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics. 2013; 29: 960-962.
    • (2013) Bioinformatics , vol.29 , pp. 960-962
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3
  • 72
    • 84883658706 scopus 로고    scopus 로고
    • Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers
    • Lin SX, Lapointe J. Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers. J Biomed Sci Eng. 2013; 6:435-442.
    • (2013) J Biomed Sci Eng , vol.6 , pp. 435-442
    • Lin, S.X.1    Lapointe, J.2
  • 73
    • 84911416290 scopus 로고    scopus 로고
    • Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model
    • Khan ZU, Hayat M, Khan MA. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model. J Theor Biol. 2015; 365:197-203.
    • (2015) J Theor Biol , vol.365 , pp. 197-203
    • Khan, Z.U.1    Hayat, M.2    Khan, M.A.3
  • 74
    • 84908072570 scopus 로고    scopus 로고
    • Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionarybased descriptors into Chou's general PseAAC
    • Dehzangi A, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionarybased descriptors into Chou's general PseAAC. J Theor Biol. 2015; 364:284-294.
    • (2015) J Theor Biol , vol.364 , pp. 284-294
    • Dehzangi, A.1    Heffernan, R.2    Sharma, A.3    Lyons, J.4    Paliwal, K.5    Sattar, A.6
  • 75
    • 84908628104 scopus 로고    scopus 로고
    • Prediction of beta-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine
    • Kumar R, Srivastava A, Kumari B, Kumar M. Prediction of beta-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine. J Theor Biol. 2015; 365:96-103.
    • (2015) J Theor Biol , vol.365 , pp. 96-103
    • Kumar, R.1    Srivastava, A.2    Kumari, B.3    Kumar, M.4
  • 76
    • 84899962803 scopus 로고    scopus 로고
    • Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction
    • Mondal S, Pai PP. Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction. J Theor Biol. 2014; 356:30-35.
    • (2014) J Theor Biol , vol.356 , pp. 30-35
    • Mondal, S.1    Pai, P.P.2
  • 77
    • 84939476364 scopus 로고    scopus 로고
    • MultiP-SChlo: multilabel protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multilabel classifier
    • Wang X, Zhang W, Zhang Q, Li GZ. MultiP-SChlo: multilabel protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multilabel classifier. Bioinformatics. 2015; 31:2639-2645.
    • (2015) Bioinformatics , vol.31 , pp. 2639-2645
    • Wang, X.1    Zhang, W.2    Zhang, Q.3    Li, G.Z.4
  • 78
    • 84955690130 scopus 로고    scopus 로고
    • iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples
    • Kabir M, Hayat M. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Mol Genet Genomics: MGG. 2016; 291:285-296.
    • (2016) Mol Genet Genomics: MGG , vol.291 , pp. 285-296
    • Kabir, M.1    Hayat, M.2
  • 79
    • 84953389263 scopus 로고    scopus 로고
    • Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition
    • Ahmad K, Waris M, Hayat M. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition. J Membr Biol. 2016:10.1007/s00232-00015-09868-00238.
    • (2016) J Membr Biol
    • Ahmad, K.1    Waris, M.2    Hayat, M.3
  • 80
    • 84962086169 scopus 로고    scopus 로고
    • Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique
    • Tang H, Chen W, Lin H. Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique. Mol Biosyst. 2016; 12:1269-1275.
    • (2016) Mol Biosyst , vol.12 , pp. 1269-1275
    • Tang, H.1    Chen, W.2    Lin, H.3
  • 81
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: Fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets
    • Du P, Gu S, Jiao Y. PseAAC-General: Fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. Int J Mol Sci. 2014; 15:3495-3506.
    • (2014) Int J Mol Sci , vol.15 , pp. 3495-3506
    • Du, P.1    Gu, S.2    Jiao, Y.3
  • 82
    • 84941783146 scopus 로고    scopus 로고
    • Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
    • Chen W, Lin H. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst. 2015; 11:2620-2634.
    • (2015) Mol BioSyst , vol.11 , pp. 2620-2634
    • Chen, W.1    Lin, H.2
  • 83
    • 84908544636 scopus 로고    scopus 로고
    • Molecular science for drug development and biomedicine
    • Zhong WZ, Zhou SF. Molecular science for drug development and biomedicine. Int J Mol Sci. 2014; 15:20072-20078.
    • (2014) Int J Mol Sci , vol.15 , pp. 20072-20078
    • Zhong, W.Z.1    Zhou, S.F.2
  • 85
    • 84941791396 scopus 로고    scopus 로고
    • Current progress in structural bioinformatics of protein-biomolecule interactions
    • Zhou GP. Current progress in structural bioinformatics of protein-biomolecule interactions. Med Chem. 2015; 11:216-216.
    • (2015) Med Chem , vol.11 , pp. 216-216
    • Zhou, G.P.1
  • 86
    • 84946761038 scopus 로고    scopus 로고
    • Perspectives in Medicinal Chemistry
    • Zhou GP, Zhong WZ. Perspectives in Medicinal Chemistry. Curr Top Med Chem. 2016; 16:381-382.
    • (2016) Curr Top Med Chem , vol.16 , pp. 381-382
    • Zhou, G.P.1    Zhong, W.Z.2
  • 87
    • 84900463301 scopus 로고    scopus 로고
    • PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition
    • Chen W, Lei TY, Jin DC, Lin H. PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition. Anal Biochem. 2014; 456:53-60.
    • (2014) Anal Biochem , vol.456 , pp. 53-60
    • Chen, W.1    Lei, T.Y.2    Jin, D.C.3    Lin, H.4
  • 88
    • 84922387565 scopus 로고    scopus 로고
    • PseKNC-General: a crossplatform package for generating various modes of pseudo nucleotide compositions
    • Chen W, Zhang X, Brooker J. PseKNC-General: a crossplatform package for generating various modes of pseudo nucleotide compositions. Bioinformatics. 2015; 31:119-120.
    • (2015) Bioinformatics , vol.31 , pp. 119-120
    • Chen, W.1    Zhang, X.2    Brooker, J.3
  • 89
    • 84927712367 scopus 로고    scopus 로고
    • repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
    • Liu B, Liu F, Fang L, Wang X. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics. 2015; 31:1307-1309.
    • (2015) Bioinformatics , vol.31 , pp. 1307-1309
    • Liu, B.1    Liu, F.2    Fang, L.3    Wang, X.4
  • 90
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • Liu B, Liu F, Wang X, Chen J. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015; 43:W65-W71.
    • (2015) Nucleic Acids Res , vol.43 , pp. W65-W71
    • Liu, B.1    Liu, F.2    Wang, X.3    Chen, J.4
  • 91
    • 78649326452 scopus 로고    scopus 로고
    • AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties
    • Kandaswamy KK, Moller S, Suganthan PN, Sridharan S, Pugalenthi G. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol. 2011; 270:56-62.
    • (2011) J Theor Biol , vol.270 , pp. 56-62
    • Kandaswamy, K.K.1    Moller, S.2    Suganthan, P.N.3    Sridharan, S.4    Pugalenthi, G.5
  • 92
    • 80052855771 scopus 로고    scopus 로고
    • iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model
    • Lin WZ, Fang JA, Xiao X. iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model. PLoS ONE. 2011; 6:e24756.
    • (2011) PLoS ONE , vol.6
    • Lin, W.Z.1    Fang, J.A.2    Xiao, X.3
  • 93
    • 84858167590 scopus 로고    scopus 로고
    • RSARF: Prediction of Residue Solvent Accessibility from Protein Sequence Using Random Forest Method
    • Pugalenthi G, Kandaswamy KK, Kolatkar P. RSARF: Prediction of Residue Solvent Accessibility from Protein Sequence Using Random Forest Method. Protein Pept Lett. 2012; 19:50-56.
    • (2012) Protein Pept Lett , vol.19 , pp. 50-56
    • Pugalenthi, G.1    Kandaswamy, K.K.2    Kolatkar, P.3
  • 94
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine learning. 2001; 45:5-32.
    • (2001) Machine learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 95
    • 34548301416 scopus 로고    scopus 로고
    • Prediction of linear B-cell epitopes using amino acid pair antigenicity scale
    • Chen J, Liu H, Yang J. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids. 2007; 33: 423-428.
    • (2007) Amino Acids , vol.33 , pp. 423-428
    • Chen, J.1    Liu, H.2    Yang, J.3
  • 96
    • 0035178419 scopus 로고    scopus 로고
    • Prediction of protein signal sequences and their cleavage sites
    • Chou KC. Prediction of protein signal sequences and their cleavage sites. Proteins: Struct, Funct, Genet. 2001; 42:136-139.
    • (2001) Proteins: Struct, Funct, Genet , vol.42 , pp. 136-139
    • Chou, K.C.1
  • 97
    • 84873575437 scopus 로고    scopus 로고
    • iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
    • Xu Y, Ding J, Wu LY. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS ONE. 2013; 8:e55844.
    • (2013) PLoS ONE , vol.8
    • Xu, Y.1    Ding, J.2    Wu, L.Y.3
  • 98
    • 84876053736 scopus 로고    scopus 로고
    • iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
    • Chen W, Feng PM, Lin H. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res. 2013; 41:e68.
    • (2013) Nucleic Acids Res , vol.41
    • Chen, W.1    Feng, P.M.2    Lin, H.3
  • 99
    • 84921500317 scopus 로고    scopus 로고
    • iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
    • Chen W, Feng PM, Deng EZ, Lin H. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal Biochem. 2014; 462:76-83.
    • (2014) Anal Biochem , vol.462 , pp. 76-83
    • Chen, W.1    Feng, P.M.2    Deng, E.Z.3    Lin, H.4
  • 100
    • 84902186435 scopus 로고    scopus 로고
    • iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition
    • Chen W, Feng PM, Lin H. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res Int. (BMRI). 2014; 2014:623149.
    • (2014) BioMed Res Int. (BMRI) , vol.2014
    • Chen, W.1    Feng, P.M.2    Lin, H.3
  • 101
    • 84903592187 scopus 로고    scopus 로고
    • iCTX-Type: A sequencebased predictor for identifying the types of conotoxins in targeting ion channels
    • Ding H, Deng EZ, Yuan LF, Liu L. iCTX-Type: A sequencebased predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res Int. (BMRI). 2014; 2014:286419.
    • (2014) BioMed Res Int. (BMRI) , vol.2014
    • Ding, H.1    Deng, E.Z.2    Yuan, L.F.3    Liu, L.4
  • 102
    • 84942246769 scopus 로고    scopus 로고
    • iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition Anal Bioc
    • Chen W, Feng P, Ding H. iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition Anal Biochem. (also, Data in Brief, 2015, 5: 376-378). 2015; 490:26-33.
    • (2015) (also, Data in Brief, 2015, 5: 376-378) , vol.490 , pp. 26-33
    • Chen, W.1    Feng, P.2    Ding, H.3
  • 103
    • 84926631457 scopus 로고    scopus 로고
    • Identification of real microRNA precursors with a pseudo structure status composition approach
    • Liu B, Fang L, Liu F, Wang X, Chen J. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS ONE. 2015; 10:e0121501.
    • (2015) PLoS ONE , vol.10
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4    Chen, J.5
  • 104
    • 84956620000 scopus 로고    scopus 로고
    • repRNA: a web server for generating various feature vectors of RNA sequences
    • Liu B, Liu F, Fang L, Wang X. repRNA: a web server for generating various feature vectors of RNA sequences. Mol Genet Genomics. 2016; 291:473-481.
    • (2016) Mol Genet Genomics , vol.291 , pp. 473-481
    • Liu, B.1    Liu, F.2    Fang, L.3    Wang, X.4
  • 105
    • 84942244470 scopus 로고    scopus 로고
    • Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy
    • Liu B, Fang L, Wang S, Wang X. Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy J Theor Biol. 2015; 385:153-159.
    • (2015) J Theor Biol , vol.385 , pp. 153-159
    • Liu, B.1    Fang, L.2    Wang, S.3    Wang, X.4
  • 106
    • 84938953300 scopus 로고    scopus 로고
    • iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach
    • Xiao X, Min JL, Lin WZ, Liu Z. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J Biomol Struct Dyn. (JBSD). 2015; 33:2221-2233.
    • (2015) J Biomol Struct Dyn. (JBSD) , vol.33 , pp. 2221-2233
    • Xiao, X.1    Min, J.L.2    Lin, W.Z.3    Liu, Z.4
  • 107
  • 108
    • 84958059324 scopus 로고    scopus 로고
    • Using deformation energy to analyze nucleosome positioning in genomes
    • Chen W, Feng P, Ding H. Using deformation energy to analyze nucleosome positioning in genomes. Genomics. 2016; 107:69-75.
    • (2016) Genomics , vol.107 , pp. 69-75
    • Chen, W.1    Feng, P.2    Ding, H.3
  • 109
    • 84855641685 scopus 로고    scopus 로고
    • iLoc-Hum: Using accumulationlabel scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou KC, Wu ZC, Xiao X. iLoc-Hum: Using accumulationlabel scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. BioSyst. 2012; 8:629-641.
    • (2012) Mol. BioSyst , vol.8 , pp. 629-641
    • Chou, K.C.1    Wu, Z.C.2    Xiao, X.3
  • 110
    • 84874928986 scopus 로고    scopus 로고
    • iLoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins
    • Lin WZ, Fang JA, Xiao X. iLoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins. Mol BioSyst. 2013; 9:634-644.
    • (2013) Mol BioSyst , vol.9 , pp. 634-644
    • Lin, W.Z.1    Fang, J.A.2    Xiao, X.3
  • 111
    • 79959667141 scopus 로고    scopus 로고
    • iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
    • Xiao X, Wu ZC. iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J Theor Biol. 2011; 284:42-51.
    • (2011) J Theor Biol , vol.284 , pp. 42-51
    • Xiao, X.1    Wu, Z.C.2
  • 112
    • 84875074764 scopus 로고    scopus 로고
    • iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types
    • Xiao X, Wang P, Lin WZ, Jia JH. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 2013; 436: 168-177.
    • (2013) Anal Biochem , vol.436 , pp. 168-177
    • Xiao, X.1    Wang, P.2    Lin, W.Z.3    Jia, J.H.4
  • 113
    • 84877758233 scopus 로고    scopus 로고
    • Some Remarks on Predicting Multi-Label Attributes in Molecular Biosystems
    • Chou KC. Some Remarks on Predicting Multi-Label Attributes in Molecular Biosystems. Mol BioSyst. 2013; 9:1092-1100.
    • (2013) Mol BioSyst , vol.9 , pp. 1092-1100
    • Chou, K.C.1
  • 114
    • 0029157083 scopus 로고
    • Review: Prediction of protein structural classes
    • Chou KC, Zhang CT. Review: Prediction of protein structural classes. Crit Rev Biochem Mol Biol. 1995; 30:275-349.
    • (1995) Crit Rev Biochem Mol Biol , vol.30 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 115
    • 54749084166 scopus 로고    scopus 로고
    • An intriguing controversy over protein structural class prediction
    • Zhou GP. An intriguing controversy over protein structural class prediction. J Protein Chem. 1998; 17:729-738.
    • (1998) J Protein Chem , vol.17 , pp. 729-738
    • Zhou, G.P.1
  • 116
    • 0035400226 scopus 로고    scopus 로고
    • Some insights into protein structural class prediction
    • Zhou GP, Assa-Munt N. Some insights into protein structural class prediction. Proteins: Struct, Funct, Genet. 2001; 44:57-59.
    • (2001) Proteins: Struct, Funct, Genet , vol.44 , pp. 57-59
    • Zhou, G.P.1    Assa-Munt, N.2
  • 117
    • 0038636605 scopus 로고    scopus 로고
    • Support vector machines for predicting membrane protein types by using functional domain composition
    • Cai YD, Zhou GP. Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J. 2003; 84:3257-3263.
    • (2003) Biophys J , vol.84 , pp. 3257-3263
    • Cai, Y.D.1    Zhou, G.P.2
  • 118
    • 0037233515 scopus 로고    scopus 로고
    • Subcellular location prediction of apoptosis proteins
    • Zhou GP, Doctor K. Subcellular location prediction of apoptosis proteins. Proteins: Struct, Funct, Genet. 2003; 50:44-48.
    • (2003) Proteins: Struct, Funct, Genet , vol.50 , pp. 44-48
    • Zhou, G.P.1    Doctor, K.2
  • 119
    • 33847637338 scopus 로고    scopus 로고
    • Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction
    • Shen HB, Yang J. Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids. 2007; 33:57-67.
    • (2007) Amino Acids , vol.33 , pp. 57-67
    • Shen, H.B.1    Yang, J.2
  • 121
    • 18344391868 scopus 로고    scopus 로고
    • Prediction of membrane protein types by incorporating amphipathic effects
    • Cai YD. Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model. 2005; 45:407-413.
    • (2005) J Chem Inf Model , vol.45 , pp. 407-413
    • Cai, Y.D.1
  • 122
    • 84945265673 scopus 로고    scopus 로고
    • DSPMP: Discriminating secretory proteins of malaria parasite by hybridizing different descriptors of Chou's pseudo amino acid patterns
    • Fan GL, Zhang XY, Liu YL, Nang Y, Wang H. DSPMP: Discriminating secretory proteins of malaria parasite by hybridizing different descriptors of Chou's pseudo amino acid patterns. J Comput Chem. 2015; 36:2317-2327.
    • (2015) J Comput Chem , vol.36 , pp. 2317-2327
    • Fan, G.L.1    Zhang, X.Y.2    Liu, Y.L.3    Nang, Y.4    Wang, H.5
  • 123
    • 85015901894 scopus 로고    scopus 로고
    • Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou's general PseAAC
    • Ju Z, Cao JZ, Gu H. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou's general PseAAC. J Theor Biol. 2016; 397:145-150.
    • (2016) J Theor Biol , vol.397 , pp. 145-150
    • Ju, Z.1    Cao, J.Z.2    Gu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.