메뉴 건너뛰기




Volumn 7, Issue 32, 2016, Pages 51270-51283

iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier

Author keywords

Ensemble classifier; Protein phosphorylation; Pseudo components; Random forests

Indexed keywords

SERINE; THREONINE; TYROSINE; LYSINE; PROTEIN; PROTEIN KINASE;

EID: 84978664062     PISSN: None     EISSN: 19492553     Source Type: Journal    
DOI: 10.18632/oncotarget.9987     Document Type: Article
Times cited : (154)

References (115)
  • 1
    • 70049083635 scopus 로고    scopus 로고
    • Protein S-nitrosylation in health and disease: a current perspective
    • Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med. 2009; 15:391-404.
    • (2009) Trends Mol Med , vol.15 , pp. 391-404
    • Foster, M.W.1    Hess, D.T.2    Stamler, J.S.3
  • 5
    • 84873575437 scopus 로고    scopus 로고
    • iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
    • Xu Y, Ding J, Wu LY. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS ONE. 2013; 8:e55844.
    • (2013) PLoS ONE , vol.8
    • Xu, Y.1    Ding, J.2    Wu, L.Y.3
  • 6
    • 84885156363 scopus 로고    scopus 로고
    • iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
    • Xu Y, Shao XJ, Wu LY, Deng NY. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ. 2013; 1:e171.
    • (2013) PeerJ , vol.1
    • Xu, Y.1    Shao, X.J.2    Wu, L.Y.3    Deng, N.Y.4
  • 7
    • 84902162941 scopus 로고    scopus 로고
    • iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach
    • Qiu WR, Xiao X, Lin WZ. iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach. Biomed Res Int (BMRI). 2014; 2014:947416.
    • (2014) Biomed Res Int (BMRI) , vol.2014
    • Qiu, W.R.1    Xiao, X.2    Lin, W.Z.3
  • 8
    • 84899856397 scopus 로고    scopus 로고
    • iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
    • Xu Y, Wen X, Shao XJ. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci. 2014; 15:7594-7610.
    • (2014) Int J Mol Sci , vol.15 , pp. 7594-7610
    • Xu, Y.1    Wen, X.2    Shao, X.J.3
  • 9
    • 84905982402 scopus 로고    scopus 로고
    • iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu Y, Wen X, Wen LS, Wu LY. iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS ONE. 2014; 9:e105018.
    • (2014) PLoS ONE , vol.9
    • Xu, Y.1    Wen, X.2    Wen, L.S.3    Wu, L.Y.4
  • 10
    • 84930570742 scopus 로고    scopus 로고
    • iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model
    • Qiu WR, Xiao X, Lin WZ. iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model. J Biomol Struct Dyn. 2015; 33:1731-1742.
    • (2015) J Biomol Struct Dyn , vol.33 , pp. 1731-1742
    • Qiu, W.R.1    Xiao, X.2    Lin, W.Z.3
  • 11
    • 84961384421 scopus 로고    scopus 로고
    • iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequencecoupling effects into pseudo components and optimizing imbalanced training dataset
    • Jia J, Liu Z, Xiao X, Liu B. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequencecoupling effects into pseudo components and optimizing imbalanced training dataset. Anal Biochem. 2016; 497:48-56.
    • (2016) Anal Biochem , vol.497 , pp. 48-56
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4
  • 12
    • 84957073578 scopus 로고    scopus 로고
    • pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach
    • Jia J, Liu Z, Xiao X, Liu B. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J Theor Biol. 2016; 394:223-230.
    • (2016) J Theor Biol , vol.394 , pp. 223-230
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4
  • 13
    • 84962586763 scopus 로고    scopus 로고
    • Recent progress in predicting posttranslational modification sites in proteins
    • Xu Y. Recent progress in predicting posttranslational modification sites in proteins. Curr Top Med Chem. 2016; 16:591-603.
    • (2016) Curr Top Med Chem , vol.16 , pp. 591-603
    • Xu, Y.1
  • 14
    • 84973637727 scopus 로고    scopus 로고
    • iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC
    • Jia J, Liu Z, Xiao X, Liu B, Chou KC. iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget. 2016; doi:10.18632/ oncotarget.9148.
    • (2016) Oncotarget
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4    Chou, K.C.5
  • 15
  • 16
    • 84926619444 scopus 로고    scopus 로고
    • Impacts of bioinformatics to medicinal chemistry
    • Chou KC. Impacts of bioinformatics to medicinal chemistry. Med Chem. 2015; 11:218-234.
    • (2015) Med Chem , vol.11 , pp. 218-234
    • Chou, K.C.1
  • 17
    • 84943593591 scopus 로고    scopus 로고
    • iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition
    • 2015; 490:26-33
    • Chen W, Feng P, Ding H. iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal Biochem. (also, Data in Brief, 2015; 5: 376-378). 2015; 490:26-33.
    • (2015) Anal Biochem. (also, Data in Brief , vol.5 , pp. 376-378
    • Chen, W.1    Feng, P.2    Ding, H.3
  • 18
    • 84956829573 scopus 로고    scopus 로고
    • pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physicalchemical properties
    • Liu Z, Xiao X, Yu DJ, Jia J, Qiu WR. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physicalchemical properties. Anal Biochem. 2016; 497:60-67.
    • (2016) Anal Biochem , vol.497 , pp. 60-67
    • Liu, Z.1    Xiao, X.2    Yu, D.J.3    Jia, J.4    Qiu, W.R.5
  • 19
    • 84929659226 scopus 로고    scopus 로고
    • CaMKII Phosphorylation of Na(V)1.5: Novel in Vitro Sites Identified by Mass Spectrometry and Reduced S516 Phosphorylation in Human Heart Failure
    • Herren AW, Weber DM, Rigor RR, Margulies KB, Phinney BS, Bers DM. CaMKII Phosphorylation of Na(V)1.5: Novel in Vitro Sites Identified by Mass Spectrometry and Reduced S516 Phosphorylation in Human Heart Failure. J Proteome Res. 2015; 14:2298-2311.
    • (2015) J Proteome Res , vol.14 , pp. 2298-2311
    • Herren, A.W.1    Weber, D.M.2    Rigor, R.R.3    Margulies, K.B.4    Phinney, B.S.5    Bers, D.M.6
  • 20
    • 84870029438 scopus 로고    scopus 로고
    • Identification of phosphorylation sites in Hansenula polymorpha Pex14p by mass spectrometry
    • Tanaka K, Soeda M, Hashimoto Y, Takenaka S, Komori M. Identification of phosphorylation sites in Hansenula polymorpha Pex14p by mass spectrometry. FEBS Open Bio. 2013; 3:6-10.
    • (2013) FEBS Open Bio , vol.3 , pp. 6-10
    • Tanaka, K.1    Soeda, M.2    Hashimoto, Y.3    Takenaka, S.4    Komori, M.5
  • 21
    • 0035259538 scopus 로고    scopus 로고
    • Use of antibodies for detection of phosphorylated proteins separated by twodimensional gel electrophoresis
    • Kaufmann H, Bailey JE, Fussenegger M. Use of antibodies for detection of phosphorylated proteins separated by twodimensional gel electrophoresis. Proteomics. 2001; 1:194-199.
    • (2001) Proteomics , vol.1 , pp. 194-199
    • Kaufmann, H.1    Bailey, J.E.2    Fussenegger, M.3
  • 22
    • 78650153738 scopus 로고    scopus 로고
    • Musite, a tool for global prediction of general and kinase-specific phosphorylation sites
    • Gao J, Thelen JJ, Dunker AK, Xu D. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics. 2010; 9:2586-2600.
    • (2010) Mol Cell Proteomics , vol.9 , pp. 2586-2600
    • Gao, J.1    Thelen, J.J.2    Dunker, A.K.3    Xu, D.4
  • 23
  • 24
    • 84920265432 scopus 로고    scopus 로고
    • Using support vector machines to identify protein phosphorylation sites in viruses
    • Huang SY, Shi SP, Qiu JD, Liu MC. Using support vector machines to identify protein phosphorylation sites in viruses. J Mol Graphics Modell. 2015; 56:84-90.
    • (2015) J Mol Graphics Modell , vol.56 , pp. 84-90
    • Huang, S.Y.1    Shi, S.P.2    Qiu, J.D.3    Liu, M.C.4
  • 25
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
    • Chou KC. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J Theor Biol. 2011; 273:236-247.
    • (2011) J Theor Biol , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 26
    • 84962263478 scopus 로고    scopus 로고
    • iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
    • Liu B, Fang L, Long R, Lan X. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition Bioinformatics. 2016; 32:362-389.
    • (2016) Bioinformatics , vol.32 , pp. 362-389
    • Liu, B.1    Fang, L.2    Long, R.3    Lan, X.4
  • 27
    • 85000869394 scopus 로고    scopus 로고
    • iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets
    • Jia J, Liu Z, Xiao X, Liu B. iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets. Molecules. 2016; 21:95.
    • (2016) Molecules , vol.21 , pp. 95
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4
  • 28
    • 84983353017 scopus 로고    scopus 로고
    • iDHS-EL: Identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an en-semble learning framework
    • Liu B, Long R. iDHS-EL: Identifying DNase I hypersensi-tivesites by fusing three different modes of pseudo nucleotide composition into an en-semble learning framework. Bioinformatics. 2016; doi:10.1093/ bioinformatics/btw186.
    • (2016) Bioinformatics
    • Liu, B.1    Long, R.2
  • 29
    • 84973610882 scopus 로고    scopus 로고
    • iROS-gPseKNC: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition
    • Xiao X, Ye HX, Liu Z, Jia JH, Chou KC. iROS-gPseKNC: predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition. Oncotarget. 2016; doi:10.18632/oncotarget.9057.
    • (2016) Oncotarget
    • Xiao, X.1    Ye, H.X.2    Liu, Z.3    Jia, J.H.4    Chou, K.C.5
  • 30
    • 84969836704 scopus 로고    scopus 로고
    • iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory
    • Qiu WR, Sun BQ, Xiao X. iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory Molecular Informatics. 2016; doi:10.1002/ minf.201600010.
    • (2016) Molecular Informatics
    • Qiu, W.R.1    Sun, B.Q.2    Xiao, X.3
  • 31
    • 0027219970 scopus 로고
    • A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins
    • Chou KC. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem. 1993; 268:16938-16948.
    • (1993) J Biol Chem , vol.268 , pp. 16938-16948
    • Chou, K.C.1
  • 32
    • 84982300933 scopus 로고    scopus 로고
    • iRSpot-EL: identify recombination spots with an ensemble learning approach
    • in press
    • Liu B, Wang S, Long R. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics. 2016; in press.
    • (2016) Bioinformatics
    • Liu, B.1    Wang, S.2    Long, R.3
  • 33
    • 0019021450 scopus 로고
    • Graphical rules for enzyme-catalyzed rate laws
    • Chou KC, Forsen S. Graphical rules for enzyme-catalyzed rate laws. Biochem J. 1980; 187:829-835.
    • (1980) Biochem J , vol.187 , pp. 829-835
    • Chou, K.C.1    Forsen, S.2
  • 34
    • 0021764092 scopus 로고
    • An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways
    • Zhou GP, Deng MH. An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J. 1984; 222:169-176.
    • (1984) Biochem J , vol.222 , pp. 169-176
    • Zhou, G.P.1    Deng, M.H.2
  • 35
    • 0024971003 scopus 로고
    • Graphic rules in steady and non-steady enzyme kinetics
    • Chou KC. Graphic rules in steady and non-steady enzyme kinetics. J Biol Chem. 1989; 264:12074-12079.
    • (1989) J Biol Chem , vol.264 , pp. 12074-12079
    • Chou, K.C.1
  • 38
    • 77955673069 scopus 로고    scopus 로고
    • 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids
    • Wu ZC, Xiao X. 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids. J Theor Biol. 2010; 267:29-34.
    • (2010) J Theor Biol , vol.267 , pp. 29-34
    • Wu, Z.C.1    Xiao, X.2
  • 39
    • 84859342767 scopus 로고    scopus 로고
    • Wenxiang: a web-server for drawing wenxiang diagrams
    • Chou KC, Lin WZ, Xiao X. Wenxiang: a web-server for drawing wenxiang diagrams. Natural Science. 2011; 3:862-865
    • (2011) Natural Science , vol.3 , pp. 862-865
    • Chou, K.C.1    Lin, W.Z.2    Xiao, X.3
  • 40
    • 79960604768 scopus 로고    scopus 로고
    • The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism
    • Zhou GP. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J Theor Biol. 2011; 284:142-148.
    • (2011) J Theor Biol , vol.284 , pp. 142-148
    • Zhou, G.P.1
  • 41
    • 33646023117 scopus 로고    scopus 로고
    • An Introduction to ROC Analysis
    • Fawcett JA. An Introduction to ROC Analysis. Pattern Recognition Letters. 2005; 27:861-874.
    • (2005) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, J.A.1
  • 43
    • 0035030201 scopus 로고    scopus 로고
    • Using subsite coupling to predict signal peptides
    • Chou KC. Using subsite coupling to predict signal peptides. Protein Eng. 2001; 14:75-79.
    • (2001) Protein Eng , vol.14 , pp. 75-79
    • Chou, K.C.1
  • 44
    • 0029076524 scopus 로고
    • A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase
    • Chou KC. A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase. Protein Sci. 1995; 4:1365-1383.
    • (1995) Protein Sci , vol.4 , pp. 1365-1383
    • Chou, K.C.1
  • 45
    • 84928722799 scopus 로고    scopus 로고
    • iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
    • Jia J, Liu Z, Xiao X. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol. 2015; 377:47-56.
    • (2015) J Theor Biol , vol.377 , pp. 47-56
    • Jia, J.1    Liu, Z.2    Xiao, X.3
  • 46
    • 84981217089 scopus 로고    scopus 로고
    • Identification of proteinprotein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC)
    • Jia J, Liu Z, Xiao X, Liu B. Identification of proteinprotein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition (iPPBS-PseAAC). J Biomol Struct Dyn. 2015; doi:10.1080/07391102.2015.1095116.
    • (2015) J Biomol Struct Dyn
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4
  • 47
    • 34548606295 scopus 로고    scopus 로고
    • Review: Recent progresses in protein subcellular location prediction
    • Chou KC, Shen HB. Review: Recent progresses in protein subcellular location prediction. Anal Biochem. 2007; 370:1-16.
    • (2007) Anal Biochem , vol.370 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 48
    • 0035748859 scopus 로고    scopus 로고
    • Prediction of signal peptides using scaled window
    • Chou KC. Prediction of signal peptides using scaled window. Peptides. 2001; 22:1973-1979.
    • (2001) Peptides , vol.22 , pp. 1973-1979
    • Chou, K.C.1
  • 49
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo amino acid compositi
    • (Erratum: ibid, 2001, Vol44, 60).
    • Chou KC. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins Struct Funct Genet. (Erratum: ibid, 2001, Vol44, 60). 2001; 43:246-255.
    • (2001) Proteins Struct Funct Genet , vol.43 , pp. 246-255
    • Chou, K.C.1
  • 50
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • Chou KC. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 2005; 21:10-19.
    • (2005) Bioinformatics , vol.21 , pp. 10-19
    • Chou, K.C.1
  • 51
    • 84859932176 scopus 로고    scopus 로고
    • PseAAC-Builder: A crossplatform stand-alone program for generating various special Chou's pseudo-amino acid compositions
    • Du P, Wang X, Xu C, Gao Y. PseAAC-Builder: A crossplatform stand-alone program for generating various special Chou's pseudo-amino acid compositions. Anal Biochem. 2012; 425:117-119.
    • (2012) Anal Biochem , vol.425 , pp. 117-119
    • Du, P.1    Wang, X.2    Xu, C.3    Gao, Y.4
  • 52
    • 84875576158 scopus 로고    scopus 로고
    • propy: a tool to generate various modes of Chou's PseAAC
    • Cao DS, Xu QS, Liang YZ. propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics. 2013; 29:960-962.
    • (2013) Bioinformatics , vol.29 , pp. 960-962
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3
  • 53
    • 84883658706 scopus 로고    scopus 로고
    • Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers
    • Lin SX, Lapointe J. Theoretical and experimental biology in one-A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers. J Biomedical Science and Engineering (JBiSE). 2013; 6:435-442.
    • (2013) J Biomedical Science and Engineering (JBiSE) , vol.6 , pp. 435-442
    • Lin, S.X.1    Lapointe, J.2
  • 54
    • 84908544636 scopus 로고    scopus 로고
    • Molecular science for drug development and biomedicine
    • Zhong WZ, Zhou SF. Molecular science for drug development and biomedicine. Int J Mol Sci. 2014; 15:20072-20078.
    • (2014) Int J Mol Sci , vol.15 , pp. 20072-20078
    • Zhong, W.Z.1    Zhou, S.F.2
  • 56
    • 84946761038 scopus 로고    scopus 로고
    • Perspectives in Medicinal Chemistry
    • Zhou GP, Zhong WZ. Perspectives in Medicinal Chemistry. Curr Top Med Chem. 2016; 16:381-382.
    • (2016) Curr Top Med Chem , vol.16 , pp. 381-382
    • Zhou, G.P.1    Zhong, W.Z.2
  • 57
    • 84911416290 scopus 로고    scopus 로고
    • Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model
    • Khan ZU, Hayat M, Khan MA. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model. J Theor Biol. 2015; 365:197-203.
    • (2015) J Theor Biol , vol.365 , pp. 197-203
    • Khan, Z.U.1    Hayat, M.2    Khan, M.A.3
  • 58
    • 84908072570 scopus 로고    scopus 로고
    • Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC
    • Dehzangi A, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC. J Theor Biol. 2015; 364: 284-294.
    • (2015) J Theor Biol , vol.364 , pp. 284-294
    • Dehzangi, A.1    Heffernan, R.2    Sharma, A.3    Lyons, J.4    Paliwal, K.5    Sattar, A.6
  • 59
    • 84908628104 scopus 로고    scopus 로고
    • Prediction of beta-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine
    • Kumar R, Srivastava A, Kumari B, Kumar M. Prediction of beta-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine. J Theor Biol. 2015; 365:96-103.
    • (2015) J Theor Biol , vol.365 , pp. 96-103
    • Kumar, R.1    Srivastava, A.2    Kumari, B.3    Kumar, M.4
  • 60
    • 84899962803 scopus 로고    scopus 로고
    • Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction
    • Mondal S, Pai PP. Chou's pseudo amino acid composition improves sequence-based antifreeze protein prediction. J Theor Biol. 2014; 356:30-35.
    • (2014) J Theor Biol , vol.356 , pp. 30-35
    • Mondal, S.1    Pai, P.P.2
  • 61
    • 84939476364 scopus 로고    scopus 로고
    • MultiP-SChlo: multilabel protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multilabel classifier
    • Wang X, Zhang W, Zhang Q, Li GZ. MultiP-SChlo: multilabel protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multilabel classifier. Bioinformatics. 2015; 31:2639-2645.
    • (2015) Bioinformatics , vol.31 , pp. 2639-2645
    • Wang, X.1    Zhang, W.2    Zhang, Q.3    Li, G.Z.4
  • 62
    • 84955690130 scopus 로고    scopus 로고
    • iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples
    • Kabir M, Hayat M. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Curr Mol Genet Genomics. MGG. 2016; 291:285-296.
    • (2016) Curr Mol Genet Genomics. MGG , vol.291 , pp. 285-296
    • Kabir, M.1    Hayat, M.2
  • 63
    • 84953389263 scopus 로고    scopus 로고
    • Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition
    • Ahmad K, Waris M, Hayat M. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition. J Membr Biol. 2016:10.1007/s00232-00015-09868-00238.
    • (2016) J Membr Biol
    • Ahmad, K.1    Waris, M.2    Hayat, M.3
  • 64
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: Fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets
    • Du P, Gu S, Jiao Y. PseAAC-General: Fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. Int J Mol Sci. 2014; 15:3495-3506.
    • (2014) Int J Mol Sci , vol.15 , pp. 3495-3506
    • Du, P.1    Gu, S.2    Jiao, Y.3
  • 65
    • 84941783146 scopus 로고    scopus 로고
    • Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
    • Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst. 2015; 11:2620-2634.
    • (2015) Mol BioSyst , vol.11 , pp. 2620-2634
    • Chen, W.1    Lin, H.2    Chou, K.C.3
  • 66
    • 84900463301 scopus 로고    scopus 로고
    • PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition
    • Chen W, Lei TY, Jin DC, Lin H. PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition. Anal Biochem. 2014; 456:53-60.
    • (2014) Anal Biochem , vol.456 , pp. 53-60
    • Chen, W.1    Lei, T.Y.2    Jin, D.C.3    Lin, H.4
  • 67
    • 84922387565 scopus 로고    scopus 로고
    • PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions
    • Chen W, Zhang X, Brooker J, Lin H. PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics. 2015; 31:119-120.
    • (2015) Bioinformatics , vol.31 , pp. 119-120
    • Chen, W.1    Zhang, X.2    Brooker, J.3    Lin, H.4
  • 68
    • 84927712367 scopus 로고    scopus 로고
    • repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects
    • Liu B, Liu F, Fang L, Wang X. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics. 2015; 31:1307-1309.
    • (2015) Bioinformatics , vol.31 , pp. 1307-1309
    • Liu, B.1    Liu, F.2    Fang, L.3    Wang, X.4
  • 69
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • Liu B, Liu F, Wang X, Chen J, Fang L, Chou KC. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015; 43:W65-W71.
    • (2015) Nucleic Acids Res , vol.43 , pp. W65-W71
    • Liu, B.1    Liu, F.2    Wang, X.3    Chen, J.4    Fang, L.5    Chou, K.C.6
  • 70
    • 0032749078 scopus 로고    scopus 로고
    • Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm
    • Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 1999; 293:321-331.
    • (1999) J Mol Biol , vol.293 , pp. 321-331
    • Wright, P.E.1    Dyson, H.J.2
  • 72
    • 60149111586 scopus 로고    scopus 로고
    • Residual structure within the disordered C-terminal segment of p21(Waf1/Cip1/Sdi1) and its implications for molecular recognition
    • Yoon MK, Venkatachalam V, Huang A, Choi BS, Stultz CM, Chou JJ. Residual structure within the disordered C-terminal segment of p21(Waf1/Cip1/Sdi1) and its implications for molecular recognition. Protein Sci. 2009; 18:337-347.
    • (2009) Protein Sci , vol.18 , pp. 337-347
    • Yoon, M.K.1    Venkatachalam, V.2    Huang, A.3    Choi, B.S.4    Stultz, C.M.5    Chou, J.J.6
  • 77
    • 84862497458 scopus 로고    scopus 로고
    • PMeS: prediction of methylation sites based on enhanced feature encoding scheme
    • Shi SP, Qiu JD, Sun XY, Suo SB, Huang SY, Liang RP. PMeS: prediction of methylation sites based on enhanced feature encoding scheme. PloS one. 2012; 7:e38772.
    • (2012) PloS one , vol.7
    • Shi, S.P.1    Qiu, J.D.2    Sun, X.Y.3    Suo, S.B.4    Huang, S.Y.5    Liang, R.P.6
  • 78
    • 78649326452 scopus 로고    scopus 로고
    • AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties
    • Kandaswamy KK, Moller S, Suganthan PN, Sridharan S, Pugalenthi G. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol. 2011; 270:56-62.
    • (2011) J Theor Biol , vol.270 , pp. 56-62
    • Kandaswamy, K.K.1    Moller, S.2    Suganthan, P.N.3    Sridharan, S.4    Pugalenthi, G.5
  • 79
    • 80052855771 scopus 로고    scopus 로고
    • iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model
    • Lin WZ, Fang JA, Xiao X. iDNA-Prot: Identification of DNA Binding Proteins Using Random Forest with Grey Model. PLoS ONE. 2011; 6:e24756.
    • (2011) PLoS ONE , vol.6
    • Lin, W.Z.1    Fang, J.A.2    Xiao, X.3
  • 80
    • 84858167590 scopus 로고    scopus 로고
    • RSARF: Prediction of Residue Solvent Accessibility from Protein Sequence Using Random Forest Method
    • Pugalenthi G, Kandaswamy KK, Kolatkar P. RSARF: Prediction of Residue Solvent Accessibility from Protein Sequence Using Random Forest Method. Protein Pept Lett. 2012; 19:50-56.
    • (2012) Protein Pept Lett , vol.19 , pp. 50-56
    • Pugalenthi, G.1    Kandaswamy, K.K.2    Kolatkar, P.3
  • 81
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine learning. 2001; 45:5-32.
    • (2001) Machine learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 82
    • 34247544233 scopus 로고    scopus 로고
    • Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides
    • Chou KC, Shen HB. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Comm (BBRC). 2007; 357: 633-640.
    • (2007) Biochem Biophys Res Comm (BBRC) , vol.357 , pp. 633-640
    • Chou, K.C.1    Shen, H.B.2
  • 83
    • 34748902270 scopus 로고    scopus 로고
    • Signal-3L: a 3-layer approach for predicting signal peptide
    • Shen HB. Signal-3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Comm (BBRC). 2007; 363:297-303.
    • (2007) Biochem Biophys Res Comm (BBRC) , vol.363 , pp. 297-303
    • Shen, H.B.1
  • 84
    • 34249074523 scopus 로고    scopus 로고
    • Using ensemble classifier to identify membrane protein types
    • Shen HB. Using ensemble classifier to identify membrane protein types. Amino Acids. 2007; 32:483-488.
    • (2007) Amino Acids , vol.32 , pp. 483-488
    • Shen, H.B.1
  • 85
    • 34447095147 scopus 로고    scopus 로고
    • MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM
    • Chou KC, Shen HB. MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Comm (BBRC). 2007; 360:339-345.
    • (2007) Biochem Biophys Res Comm (BBRC) , vol.360 , pp. 339-345
    • Chou, K.C.1    Shen, H.B.2
  • 86
    • 33745759451 scopus 로고    scopus 로고
    • Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization
    • Chou KC, Shen HB. Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun (BBRC). 2006; 347:150-157.
    • (2006) Biochem Biophys Res Commun (BBRC) , vol.347 , pp. 150-157
    • Chou, K.C.1    Shen, H.B.2
  • 87
    • 33847080827 scopus 로고    scopus 로고
    • Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins
    • Shen HB. Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng Des Sel. 2007; 20:39-46.
    • (2007) Protein Eng Des Sel , vol.20 , pp. 39-46
    • Shen, H.B.1
  • 88
    • 34249318001 scopus 로고    scopus 로고
    • Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites
    • Chou KC, Shen HB. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res. 2007; 6:1728-1734.
    • (2007) J Proteome Res , vol.6 , pp. 1728-1734
    • Chou, K.C.1    Shen, H.B.2
  • 89
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen HB, Chou KC. Ensemble classifier for protein fold pattern recognition. Bioinformatics. 2006; 22:1717-1722.
    • (2006) Bioinformatics , vol.22 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 90
    • 35348973511 scopus 로고    scopus 로고
    • EzyPred: A top-down approach for predicting enzyme functional classes and subclasses
    • Shen HB. EzyPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Comm (BBRC). 2007; 364:53-59.
    • (2007) Biochem Biophys Res Comm (BBRC) , vol.364 , pp. 53-59
    • Shen, H.B.1
  • 91
    • 34548301416 scopus 로고    scopus 로고
    • Prediction of linear B-cell epitopes using amino acid pair antigenicity scale
    • Chen J, Liu H, Yang J. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids. 2007; 33: 423-428.
    • (2007) Amino Acids , vol.33 , pp. 423-428
    • Chen, J.1    Liu, H.2    Yang, J.3
  • 92
    • 0035178419 scopus 로고    scopus 로고
    • Prediction of protein signal sequences and their cleavage sites
    • Chou KC. Prediction of protein signal sequences and their cleavage sites. Proteins: Struct, Funct, Genet. 2001; 42:136-139.
    • (2001) Proteins: Struct, Funct, Genet , vol.42 , pp. 136-139
    • Chou, K.C.1
  • 93
    • 84876053736 scopus 로고    scopus 로고
    • iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
    • Chen W, Feng PM, Lin H, Chou KC. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res. 2013; 41:e68.
    • (2013) Nucleic Acids Res , vol.41
    • Chen, W.1    Feng, P.M.2    Lin, H.3    Chou, K.C.4
  • 94
    • 84921500317 scopus 로고    scopus 로고
    • iTIS-PseTNC: a sequencebased predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
    • Chen W, Feng PM, Deng EZ. iTIS-PseTNC: a sequencebased predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal Biochem. 2014; 462:76-83.
    • (2014) Anal Biochem , vol.462 , pp. 76-83
    • Chen, W.1    Feng, P.M.2    Deng, E.Z.3
  • 95
    • 84902186435 scopus 로고    scopus 로고
    • iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition
    • Chen W, Feng PM, Lin H. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. Biomed Research International (BMRI). 2014; 2014:623149.
    • (2014) Biomed Research International (BMRI) , vol.2014
    • Chen, W.1    Feng, P.M.2    Lin, H.3
  • 96
    • 84903592187 scopus 로고    scopus 로고
    • iCTX-Type: A sequencebased predictor for identifying the types of conotoxins in targeting ion channels
    • Ding H, Deng EZ, Yuan LF, Liu L. iCTX-Type: A sequencebased predictor for identifying the types of conotoxins in targeting ion channels. BioMed Research International (BMRI). 2014; 2014:286419.
    • (2014) BioMed Research International (BMRI) , vol.2014
    • Ding, H.1    Deng, E.Z.2    Yuan, L.F.3    Liu, L.4
  • 97
    • 84941040066 scopus 로고    scopus 로고
    • iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
    • Lin H, Deng EZ, Ding H, Chen W, Chou KC. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 2014; 42:12961-12972.
    • (2014) Nucleic Acids Res , vol.42 , pp. 12961-12972
    • Lin, H.1    Deng, E.Z.2    Ding, H.3    Chen, W.4    Chou, K.C.5
  • 98
    • 84926631457 scopus 로고    scopus 로고
    • Identification of real microRNA precursors with a pseudo structure status composition approach
    • Liu B, Fang L, Liu F, Wang X. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS ONE. 2015; 10:e0121501.
    • (2015) PLoS ONE , vol.10
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4
  • 99
    • 84938953300 scopus 로고    scopus 로고
    • iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach
    • Xiao X, Min JL, Lin WZ, Liu Z. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J Biomol Struct Dyn. 2015; 33:2221-2233.
    • (2015) J Biomol Struct Dyn , vol.33 , pp. 2221-2233
    • Xiao, X.1    Min, J.L.2    Lin, W.Z.3    Liu, Z.4
  • 100
    • 84962865637 scopus 로고    scopus 로고
    • iACP: a sequence-based tool for identifying anticancer peptides
    • Chen W, Ding H, Feng P, Lin H, Chou KC. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget. 2016; 7:16895-16909.
    • (2016) Oncotarget , vol.7 , pp. 16895-16909
    • Chen, W.1    Ding, H.2    Feng, P.3    Lin, H.4    Chou, K.C.5
  • 101
    • 84958059324 scopus 로고    scopus 로고
    • Using deformation energy to analyze nucleosome positioning in genomes
    • Chen W, Feng P, Ding H. Using deformation energy to analyze nucleosome positioning in genomes. Genomics. 2016; 107:69-75.
    • (2016) Genomics , vol.107 , pp. 69-75
    • Chen, W.1    Feng, P.2    Ding, H.3
  • 102
    • 84954388556 scopus 로고    scopus 로고
    • iMiRNA-PseDPC: microRNA precursor identification with a pseudo distancepair composition approach
    • Liu B, Fang L, Liu F, Wang X. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distancepair composition approach. J Biomol Struct Dyn. 2016; 34:223-235.
    • (2016) J Biomol Struct Dyn , vol.34 , pp. 223-235
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4
  • 103
    • 84855641685 scopus 로고    scopus 로고
    • iLoc-Hum: Using accumulationlabel scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou KC, Wu ZC, Xiao X. iLoc-Hum: Using accumulationlabel scale to predict subcellular locations of human proteins with both single and multiple sites. Mol BioSyst. 2012; 8:629-641.
    • (2012) Mol BioSyst , vol.8 , pp. 629-641
    • Chou, K.C.1    Wu, Z.C.2    Xiao, X.3
  • 104
    • 84874928986 scopus 로고    scopus 로고
    • iLoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins
    • Lin WZ, Fang JA, Xiao X. iLoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins. Mol BioSyst. 2013; 9:634-644.
    • (2013) Mol BioSyst , vol.9 , pp. 634-644
    • Lin, W.Z.1    Fang, J.A.2    Xiao, X.3
  • 105
    • 79959667141 scopus 로고    scopus 로고
    • iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
    • Xiao X, Wu ZC. iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J Theor Biol. 2011; 284:42-51.
    • (2011) J Theor Biol , vol.284 , pp. 42-51
    • Xiao, X.1    Wu, Z.C.2
  • 106
    • 84875074764 scopus 로고    scopus 로고
    • iAMP-2L: A two-level multilabel classifier for identifying antimicrobial peptides and their functional types
    • Xiao X, Wang P, Lin WZ. iAMP-2L: A two-level multilabel classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 2013; 436:168-177.
    • (2013) Anal Biochem , vol.436 , pp. 168-177
    • Xiao, X.1    Wang, P.2    Lin, W.Z.3
  • 107
    • 84877758233 scopus 로고    scopus 로고
    • Some Remarks on Predicting Multi-Label Attributes in Molecular Biosystems
    • Chou KC. Some Remarks on Predicting Multi-Label Attributes in Molecular Biosystems. Mol BioSyst. 2013; 9:1092-1100.
    • (2013) Mol BioSyst , vol.9 , pp. 1092-1100
    • Chou, K.C.1
  • 108
    • 0029157083 scopus 로고
    • Review: Prediction of protein structural classes
    • Chou KC, Zhang CT. Review: Prediction of protein structural classes. Crit Rev Biochem Mol Biol. 1995; 30:275-349.
    • (1995) Crit Rev Biochem Mol Biol , vol.30 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 109
    • 54749084166 scopus 로고    scopus 로고
    • An intriguing controversy over protein structural class prediction
    • Zhou GP. An intriguing controversy over protein structural class prediction. J Protein Chem. 1998; 17:729-738.
    • (1998) J Protein Chem , vol.17 , pp. 729-738
    • Zhou, G.P.1
  • 110
    • 0037233515 scopus 로고    scopus 로고
    • Subcellular location prediction of apoptosis proteins
    • Zhou GP, Doctor K. Subcellular location prediction of apoptosis proteins. Proteins: Struct, Funct, Genet. 2003; 50:44-48.
    • (2003) Proteins: Struct, Funct, Genet , vol.50 , pp. 44-48
    • Zhou, G.P.1    Doctor, K.2
  • 111
    • 18344391868 scopus 로고    scopus 로고
    • Prediction of membrane protein types by incorporating amphipathic effects
    • Chou KC, Cai YD. Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model. 2005; 45:407-413.
    • (2005) J Chem Inf Model , vol.45 , pp. 407-413
    • Chou, K.C.1    Cai, Y.D.2
  • 112
    • 33847260136 scopus 로고    scopus 로고
    • Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells
    • Shen HB. Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers. 2007; 85:233-240.
    • (2007) Biopolymers , vol.85 , pp. 233-240
    • Shen, H.B.1
  • 113
    • 84904722553 scopus 로고    scopus 로고
    • Prediction of protein structure classes by incorporating different protein descriptors into general Chou's pseudo amino acid composition
    • Nanni L, Brahnam S, Lumini A. Prediction of protein structure classes by incorporating different protein descriptors into general Chou's pseudo amino acid composition. J Theor Biol. 2014; 360:109-116.
    • (2014) J Theor Biol , vol.360 , pp. 109-116
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 114
    • 84944276251 scopus 로고    scopus 로고
    • Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC
    • Ahmad S, Kabir M, Hayat M. Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC. Computer methods and programs in biomedicine. 2015; 122:165-174.
    • (2015) Computer methods and programs in biomedicine , vol.122 , pp. 165-174
    • Ahmad, S.1    Kabir, M.2    Hayat, M.3
  • 115
    • 84921023793 scopus 로고    scopus 로고
    • PseDNA-Pro: DNA-binding protein identification by combining Chou's PseAAC and physicochemical distance transformation
    • Liu B, Xu J, Fan S, Xu R, Jiyun Zhou J, Wang X. PseDNA-Pro: DNA-binding protein identification by combining Chou's PseAAC and physicochemical distance transformation. Molecular Informatics. 2015; 34:8-17.
    • (2015) Molecular Informatics , vol.34 , pp. 8-17
    • Liu, B.1    Xu, J.2    Fan, S.3    Xu, R.4    Jiyun Zhou, J.5    Wang, X.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.