메뉴 건너뛰기




Volumn 103, Issue 5-6, 2014, Pages 329-336

Inference and validation of predictive gene networks from biomedical literature and gene expression data

Author keywords

Gene expression; Network inference; Quantitative validation; Targeted perturbations

Indexed keywords

ARTICLE; COLORECTAL CANCER CELL LINE; COLORECTAL TUMOR; CONTROLLED STUDY; GENE INTERACTION; GENE REGULATORY NETWORK; GENE SILENCING; GENOMICS; HUMAN; HUMAN CELL; HUMAN TISSUE; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; VALIDATION STUDY; GENE EXPRESSION PROFILING; GENETICS; METABOLISM; TUMOR CELL LINE;

EID: 84902160817     PISSN: 08887543     EISSN: 10898646     Source Type: Journal    
DOI: 10.1016/j.ygeno.2014.03.004     Document Type: Article
Times cited : (35)

References (34)
  • 1
    • 84902165212 scopus 로고    scopus 로고
    • GeneChip expression analysis: data analysis fundamentals
    • Affymetrix
    • Affymetrix GeneChip expression analysis: data analysis fundamentals. Technical Report 2004.
    • (2004) Technical Report
  • 2
    • 84883501840 scopus 로고    scopus 로고
    • Global assessment of network inference algorithms based on available literature of gene/protein interactions
    • Altay G., Altay N., Neal D. Global assessment of network inference algorithms based on available literature of gene/protein interactions. Turk. J. Biol. 2013, 37:547-555.
    • (2013) Turk. J. Biol. , vol.37 , pp. 547-555
    • Altay, G.1    Altay, N.2    Neal, D.3
  • 4
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabási A.-L., Oltvai Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 2004, 5(2):101-113.
    • (2004) Nat. Rev. Genet. , vol.5 , Issue.2 , pp. 101-113
    • Barabási, A.-L.1    Oltvai, Z.N.2
  • 8
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C., Peng H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinforma. Comput. Biol. 2005, 2:185-205.
    • (2005) J. Bioinforma. Comput. Biol. , vol.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 9
    • 48249140218 scopus 로고    scopus 로고
    • Seeded Bayesian Networks: constructing genetic networks from microarray data
    • Djebbari A., Quackenbush J.F. Seeded Bayesian Networks: constructing genetic networks from microarray data. BMC Syst. Biol. 2008, 2(1):57.
    • (2008) BMC Syst. Biol. , vol.2 , Issue.1 , pp. 57
    • Djebbari, A.1    Quackenbush, J.F.2
  • 10
    • 79955765957 scopus 로고    scopus 로고
    • Validation of gene regulatory networks: scientific and inferential
    • Dougherty E.R. Validation of gene regulatory networks: scientific and inferential. Brief. Bioinform. 2011, 12(3):245-252.
    • (2011) Brief. Bioinform. , vol.12 , Issue.3 , pp. 245-252
    • Dougherty, E.R.1
  • 11
    • 24044522270 scopus 로고    scopus 로고
    • BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis
    • Durinck S., Moreau Y., Kasprzyk A., Davis S., De Moor B., Brazma A., Huber W. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21(16):3439-3440.
    • (2005) Bioinformatics , vol.21 , Issue.16 , pp. 3439-3440
    • Durinck, S.1    Moreau, Y.2    Kasprzyk, A.3    Davis, S.4    De Moor, B.5    Brazma, A.6    Huber, W.7
  • 13
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 2004, 303(5659):799-805.
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 14
    • 80052176477 scopus 로고    scopus 로고
    • Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data
    • Gao S., Wang X. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data. BMC Bioinforma. 2011, 12(1):359.
    • (2011) BMC Bioinforma. , vol.12 , Issue.1 , pp. 359
    • Gao, S.1    Wang, X.2
  • 21
    • 77649213364 scopus 로고    scopus 로고
    • How to understand the cell by breaking it: network analysis of gene perturbation screens
    • Markowetz F. How to understand the cell by breaking it: network analysis of gene perturbation screens. PLoS Comput. Biol. 2010, 6(2):e1000655.
    • (2010) PLoS Comput. Biol. , vol.6 , Issue.2
    • Markowetz, F.1
  • 22
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks - a review
    • Markowetz F., Spang R. Inferring cellular networks - a review. BMC Bioinforma. 2007, 8:S5.
    • (2007) BMC Bioinforma. , vol.8
    • Markowetz, F.1    Spang, R.2
  • 23
    • 33646703136 scopus 로고    scopus 로고
    • Genetic instability and divergence of clonal populations in colon cancer cells in vitro
    • Masramon L., Vendrell E., Tarafa G., Capellà G., Miró R., Ribas M., Peinado M.A. Genetic instability and divergence of clonal populations in colon cancer cells in vitro. J. Cell Sci. 2006, 119(Pt 8):1477-1482.
    • (2006) J. Cell Sci. , vol.119 , Issue.PART 8 , pp. 1477-1482
    • Masramon, L.1    Vendrell, E.2    Tarafa, G.3    Capellà, G.4    Miró, R.5    Ribas, M.6    Peinado, M.A.7
  • 24
    • 77749291770 scopus 로고    scopus 로고
    • Frozen robust multiarray analysis (fRMA)
    • McCall M.N., Bolstad B.M., Irizarry R.A. Frozen robust multiarray analysis (fRMA). Biostatistics 2010, 11(2):242-253.
    • (2010) Biostatistics , vol.11 , Issue.2 , pp. 242-253
    • McCall, M.N.1    Bolstad, B.M.2    Irizarry, R.A.3
  • 25
    • 84937351341 scopus 로고
    • Multivariate information transmission
    • McGill W. Multivariate information transmission. IEEE Trans. Inf. Theory 1954, 4(4):93-111.
    • (1954) IEEE Trans. Inf. Theory , vol.4 , Issue.4 , pp. 93-111
    • McGill, W.1
  • 27
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • Opgen-Rhein R., Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol. 2007, 1(1):37.
    • (2007) BMC Syst. Biol. , vol.1 , Issue.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 29
    • 67649878827 scopus 로고    scopus 로고
    • Literature-based priors for gene regulatory networks
    • Steele E., Tucker A., Hoen P.T., Schuemie M. Literature-based priors for gene regulatory networks. Bioinformatics 2009, 25(14):1768-1774.
    • (2009) Bioinformatics , vol.25 , Issue.14 , pp. 1768-1774
    • Steele, E.1    Tucker, A.2    Hoen, P.T.3    Schuemie, M.4
  • 30
    • 33845730788 scopus 로고    scopus 로고
    • Perturbations to uncover gene networks
    • Tegnér J., Björkegren J. Perturbations to uncover gene networks. Trends Genet. 2007, 23(1):34-41.
    • (2007) Trends Genet. , vol.23 , Issue.1 , pp. 34-41
    • Tegnér, J.1    Björkegren, J.2
  • 31
    • 79953890868 scopus 로고    scopus 로고
    • What does biologically meaningful mean? A perspective on gene regulatory network validation
    • Walhout A.J.M. What does biologically meaningful mean? A perspective on gene regulatory network validation. Genome Biol. 2011, 12(4):109.
    • (2011) Genome Biol. , vol.12 , Issue.4 , pp. 109
    • Walhout, A.J.M.1
  • 32
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • Werhli A., Husmeier D. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 2007, 6(1).
    • (2007) Stat. Appl. Genet. Mol. Biol. , vol.6 , Issue.1
    • Werhli, A.1    Husmeier, D.2
  • 33
    • 77952310528 scopus 로고    scopus 로고
    • A human functional protein interaction network and its application to cancer data analysis
    • Wu G., Feng X., Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010, 11(5):R53.
    • (2010) Genome Biol. , vol.11 , Issue.5
    • Wu, G.1    Feng, X.2    Stein, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.