메뉴 건너뛰기




Volumn 2, Issue 3, 2014, Pages 209-225

Friction of low-dimensional nanomaterial systems

Author keywords

energy dissipation; friction; nanomaterials; nanoparticles; nanotubes; two dimensional materials

Indexed keywords

BORON NITRIDE; ENERGY DISSIPATION; ENERGY EFFICIENCY; III-V SEMICONDUCTORS; LAYERED SEMICONDUCTORS; LUBRICANTS; MATERIALS HANDLING EQUIPMENT; METAL NANOPARTICLES; MOLYBDENUM COMPOUNDS; MULTIWALLED CARBON NANOTUBES (MWCN); NANOPARTICLES; NANOSTRUCTURED MATERIALS; NANOSYSTEMS; NANOTUBES; TRANSITION METALS;

EID: 84976359343     PISSN: 22237690     EISSN: 22237704     Source Type: Journal    
DOI: 10.1007/s40544-014-0064-0     Document Type: Article
Times cited : (78)

References (95)
  • 2
    • 84856302673 scopus 로고    scopus 로고
    • Global energy consumption due to friction in passenger cars
    • 10.1016/j.triboint.2011.11.022
    • Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int 47: 221–234 (2012)
    • (2012) Tribol Int , vol.47 , pp. 221-234
    • Holmberg, K.1    Andersson, P.2    Erdemir, A.3
  • 4
    • 0004064636 scopus 로고    scopus 로고
    • Professional Engineering Publishing, London
    • Dowson D. History of Tribology. London: Professional Engineering Publishing, 1998.
    • (1998) History of Tribology
    • Dowson, D.1
  • 6
    • 0027947140 scopus 로고
    • Atomic-scale friction measurements using friction force microscopy: Part I—General principles and new measurement techniques
    • 10.1115/1.2927240
    • Ruan J-A, Bhushan B. Atomic-scale friction measurements using friction force microscopy: Part I—General principles and new measurement techniques. J Tribol 116: 378–388 (1994)
    • (1994) J Tribol , vol.116 , pp. 378-388
    • Ruan, J.-A.1    Bhushan, B.2
  • 7
    • 19844377748 scopus 로고    scopus 로고
    • Nanotribology and nanomechanics
    • 10.1016/j.wear.2005.01.010
    • Bhushan B. Nanotribology and nanomechanics. Wear 259: 1507–1531 (2005)
    • (2005) Wear , vol.259 , pp. 1507-1531
    • Bhushan, B.1
  • 8
    • 0000672235 scopus 로고
    • CVI. A molecular theory of friction
    • Tomlinson G. CVI. A molecular theory of friction. Philos Mag 7: 905–939 (1929)
    • (1929) Philos Mag , vol.7 , pp. 905-939
    • Tomlinson, G.1
  • 9
    • 0001191734 scopus 로고
    • On the theory of plastic deformation and twinning. II
    • 0021.08501
    • Kontorova T, Frenkel J. On the theory of plastic deformation and twinning. II. Zh Eksp Teor Fiz 8: 1340–1348 (1938)
    • (1938) Zh Eksp Teor Fiz , vol.8 , pp. 1340-1348
    • Kontorova, T.1    Frenkel, J.2
  • 10
    • 0000480108 scopus 로고    scopus 로고
    • Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties
    • 10.1103/PhysRevB.53.7539
    • Weiss M, Elmer F-J. Dry friction in the Frenkel-Kontorova-Tomlinson model: Static properties. Phys Rev B 53: 7539 (1996)
    • (1996) Phys Rev B , vol.53 , pp. 7539
    • Weiss, M.1    Elmer, F.-J.2
  • 11
    • 23844526556 scopus 로고    scopus 로고
    • Atomic scale friction between clean graphite surfaces
    • 10.1016/j.ssc.2005.05.052
    • Matsushita K, Matsukawa H, Sasaki N. Atomic scale friction between clean graphite surfaces. Solid State Commun 136: 51–55 (2005)
    • (2005) Solid State Commun , vol.136 , pp. 51-55
    • Matsushita, K.1    Matsukawa, H.2    Sasaki, N.3
  • 12
    • 0029292717 scopus 로고
    • Nanotribology: Friction, wear and lubrication at the atomic scale
    • 10.1038/374607a0
    • Bhushan B, Israelachvili J N, Landman U. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature 374: 607–616 (1995)
    • (1995) Nature , vol.374 , pp. 607-616
    • Bhushan, B.1    Israelachvili, J.N.2    Landman, U.3
  • 13
    • 0442279483 scopus 로고    scopus 로고
    • Friction-wear characteristics of carbon fiber reinforced friction material
    • 10.1023/B:JMSC.0000011520.48580.fc
    • Guan Q F, Li G Y, Wang H Y, An J. Friction-wear characteristics of carbon fiber reinforced friction material. J Mater Sci 39: 641–643 (2004)
    • (2004) J Mater Sci , vol.39 , pp. 641-643
    • Guan, Q.F.1    Li, G.Y.2    Wang, H.Y.3    An, J.4
  • 14
    • 0034228812 scopus 로고    scopus 로고
    • Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp
    • 10.1016/S0301-679X(00)00087-6
    • Kim S J, Jang H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribol Int 33: 477–484 (2000)
    • (2000) Tribol Int , vol.33 , pp. 477-484
    • Kim, S.J.1    Jang, H.2
  • 15
    • 84891131356 scopus 로고    scopus 로고
    • Mechanical properties of nanoparticles: Basics and applications
    • 10.1088/0022-3727/47/1/013001
    • Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: Basics and applications. J Phys D: Appl Phys 47: 013001 (2014)
    • (2014) J Phys D: Appl Phys , vol.47 , pp. 013001
    • Guo, D.1    Xie, G.2    Luo, J.3
  • 16
    • 0343681011 scopus 로고
    • Atomic-scale friction of a tungsten tip on a graphite surface
    • 10.1103/PhysRevLett.59.1942
    • Mate C, McClelland G, Erlandsson R, Chiang S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59: 1942–1945 (1987)
    • (1987) Phys Rev Lett , vol.59 , pp. 1942-1945
    • Mate, C.1    McClelland, G.2    Erlandsson, R.3    Chiang, S.4
  • 19
    • 23944463389 scopus 로고    scopus 로고
    • High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface
    • 10.1126/science.1113239
    • Park J Y, Ogletree D F, Salmeron M, Ribeiro R A, Canfield P C, Jenks C J, Thiel P A. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309: 1354–1356 (2005)
    • (2005) Science , vol.309 , pp. 1354-1356
    • Park, J.Y.1    Ogletree, D.F.2    Salmeron, M.3    Ribeiro, R.A.4    Canfield, P.C.5    Jenks, C.J.6    Thiel, P.A.7
  • 20
  • 21
    • 0031352291 scopus 로고    scopus 로고
    • 2 nanoparticle as an additive in liquid paraffin
    • 10.1016/S0043-1648(97)00200-7
    • 2 nanoparticle as an additive in liquid paraffin. Wear 213: 29–32 (1997)
    • (1997) Wear , vol.213 , pp. 29-32
    • Xue, Q.1    Liu, W.2    Zhang, Z.3
  • 22
    • 0037532408 scopus 로고    scopus 로고
    • A study on the friction and wear behavior of PTFE filled with alumina nanoparticles
    • 10.1016/S0043-1648(03)00252-7
    • Sawyer W G, Freudenberg K D, Bhimaraj P, Schadler L S. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254: 573–580 (2003)
    • (2003) Wear , vol.254 , pp. 573-580
    • Sawyer, W.G.1    Freudenberg, K.D.2    Bhimaraj, P.3    Schadler, L.S.4
  • 24
    • 0034648767 scopus 로고    scopus 로고
    • 2 nanoparticles with ultra-low friction and wear
    • 10.1038/35025020
    • 2 nanoparticles with ultra-low friction and wear. Nature 407: 164–167 (2000)
    • (2000) Nature , vol.407 , pp. 164-167
    • Chhowalla, M.1    Amaratunga, G.A.J.2
  • 25
    • 0034725776 scopus 로고    scopus 로고
    • Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes
    • 10.1126/science.289.5479.602
    • Cumings J, Zettl A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289: 602–604 (2000)
    • (2000) Science , vol.289 , pp. 602-604
    • Cumings, J.1    Zettl, A.2
  • 26
    • 0343191439 scopus 로고    scopus 로고
    • Materials: Peeling and sharpening multiwall nanotubes
    • 10.1038/35020698
    • Cumings J, Collins P G, Zettl A. Materials: Peeling and sharpening multiwall nanotubes. Nature 406: 586–586 (2000)
    • (2000) Nature , vol.406 , pp. 586
    • Cumings, J.1    Collins, P.G.2    Zettl, A.3
  • 28
    • 0037185413 scopus 로고    scopus 로고
    • Multiwalled carbon nanotubes as gigahertz oscillators
    • 10.1103/PhysRevLett.88.045503
    • Zheng Q, Jiang Q. Multiwalled carbon nanotubes as gigahertz oscillators. Phys Rev Lett 88: 045503 (2002)
    • (2002) Phys Rev Lett , vol.88 , pp. 045503
    • Zheng, Q.1    Jiang, Q.2
  • 29
    • 0037098473 scopus 로고    scopus 로고
    • Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation
    • 10.1103/PhysRevB.65.245409
    • Zheng Q, Liu J Z, Jiang Q. Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Phys Rev B 65: 245409 (2002)
    • (2002) Phys Rev B , vol.65 , pp. 245409
    • Zheng, Q.1    Liu, J.Z.2    Jiang, Q.3
  • 30
    • 0142188667 scopus 로고    scopus 로고
    • Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes
    • 10.1103/PhysRevLett.91.125501
    • Guo W, Guo Y, Gao H, Zheng Q, Zhong W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Phys Rev Lett 91: 125501 (2003)
    • (2003) Phys Rev Lett , vol.91 , pp. 125501
    • Guo, W.1    Guo, Y.2    Gao, H.3    Zheng, Q.4    Zhong, W.5
  • 31
    • 4444339208 scopus 로고    scopus 로고
    • Energy dissipation mechanisms in carbon nanotube oscillators
    • 10.1103/PhysRevLett.91.175504
    • Zhao Y, Ma C-C, Chen G, Jiang Q. Energy dissipation mechanisms in carbon nanotube oscillators. Phys Rev Lett 91: 175504 (2003)
    • (2003) Phys Rev Lett , vol.91 , pp. 175504
    • Zhao, Y.1    Ma, C.-C.2    Chen, G.3    Jiang, Q.4
  • 32
    • 0346960132 scopus 로고    scopus 로고
    • Methods of calculation of a friction coefficient: Application to nanotubes
    • 10.1103/PhysRevLett.91.185503
    • Servantie J, Gaspard P. Methods of calculation of a friction coefficient: Application to nanotubes. Phys Rev Lett 91: 185503 (2003)
    • (2003) Phys Rev Lett , vol.91 , pp. 185503
    • Servantie, J.1    Gaspard, P.2
  • 33
    • 0037422947 scopus 로고    scopus 로고
    • Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators
    • 10.1103/PhysRevLett.90.055504
    • Legoas S, Coluci V, Braga S, Coura P, Dantas S, Galvao D. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Physl Rev Lett 90: 055504 (2003)
    • (2003) Physl Rev Lett , vol.90 , pp. 055504
    • Legoas, S.1    Coluci, V.2    Braga, S.3    Coura, P.4    Dantas, S.5    Galvao, D.6
  • 34
    • 0142043382 scopus 로고    scopus 로고
    • Oscillatory behavior of double-walled nanotubes under extension: A simple nanoscale damped spring
    • 10.1021/nl034171o
    • Rivera J L, McCabe C, Cummings P T. Oscillatory behavior of double-walled nanotubes under extension: A simple nanoscale damped spring. Nano Lett 3: 1001–1005 (2003)
    • (2003) Nano Lett , vol.3 , pp. 1001-1005
    • Rivera, J.L.1    McCabe, C.2    Cummings, P.T.3
  • 35
    • 80052254309 scopus 로고    scopus 로고
    • Thermal-Induced Edge Barriers and Forces in Interlayer Interaction of Concentric Carbon Nanotubes
    • 10.1103/PhysRevLett.107.105502
    • Guo Z R, Chang T C, Guo X M, Gao H J. Thermal-Induced Edge Barriers and Forces in Interlayer Interaction of Concentric Carbon Nanotubes. Phys Rev Lett 107: 105502 (2011)
    • (2011) Phys Rev Lett , vol.107 , pp. 105502
    • Guo, Z.R.1    Chang, T.C.2    Guo, X.M.3    Gao, H.J.4
  • 36
    • 69649108576 scopus 로고    scopus 로고
    • Dynamic sliding friction between concentric carbon nanotubes
    • 10.1103/PhysRevLett.93.065503
    • Tangney P, Louie S G, Cohen M L. Dynamic sliding friction between concentric carbon nanotubes. Phys Rev Lett 93: 065503 (2004)
    • (2004) Phys Rev Lett , vol.93 , pp. 065503
    • Tangney, P.1    Louie, S.G.2    Cohen, M.L.3
  • 37
    • 13244298346 scopus 로고    scopus 로고
    • Optimized bearing and interlayer friction in multiwalled carbon nanotubes
    • Guo W, Gao H. Optimized bearing and interlayer friction in multiwalled carbon nanotubes. Comput Model Eng Sci 7: 19–34 (2005)
    • (2005) Comput Model Eng Sci , vol.7 , pp. 19-34
    • Guo, W.1    Gao, H.2
  • 38
    • 84890570808 scopus 로고    scopus 로고
    • Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions
    • 10.1038/nnano.2013.217
    • Zhang R, Ning Z, Zhang Y, Zheng Q, Chen Q, Xie H, Zhang Q, Qian W, Wei F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 8: 912–916 (2013)
    • (2013) Nat Nanotechnol , vol.8 , pp. 912-916
    • Zhang, R.1    Ning, Z.2    Zhang, Y.3    Zheng, Q.4    Chen, Q.5    Xie, H.6    Zhang, Q.7    Qian, W.8    Wei, F.9
  • 39
    • 84890560928 scopus 로고    scopus 로고
    • Friction: Towards macroscale superlubricity
    • 10.1038/nnano.2013.244
    • Urbakh M. Friction: Towards macroscale superlubricity. Nat Nanotechnol 8: 893–894 (2013)
    • (2013) Nat Nanotechnol , vol.8 , pp. 893-894
    • Urbakh, M.1
  • 40
    • 33644936793 scopus 로고    scopus 로고
    • Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes
    • 10.1103/PhysRevB.72.075409
    • Guo W, Zhong W, Dai Y, Li S. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes. Phys Rev B 72: 075409 (2005)
    • (2005) Phys Rev B , vol.72 , pp. 075409
    • Guo, W.1    Zhong, W.2    Dai, Y.3    Li, S.4
  • 41
    • 33745908289 scopus 로고    scopus 로고
    • Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes
    • 10.1103/PhysRevLett.97.025501
    • Kis A, Jensen K, Aloni S, Mickelson W, Zettl A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys Rev Lett 97: 025501 (2006)
    • (2006) Phys Rev Lett , vol.97 , pp. 025501
    • Kis, A.1    Jensen, K.2    Aloni, S.3    Mickelson, W.4    Zettl, A.5
  • 42
    • 84903192828 scopus 로고    scopus 로고
    • Ultrahigh interlayer friction in multiwalled boron nitride nanotubes
    • 10.1038/nmat3985
    • Niguès A, Siria A, Vincent P, Poncharal P, Bocquet L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat Mater 13: 688–693 (2014)
    • (2014) Nat Mater , vol.13 , pp. 688-693
    • Niguès, A.1    Siria, A.2    Vincent, P.3    Poncharal, P.4    Bocquet, L.5
  • 43
    • 79961172843 scopus 로고    scopus 로고
    • Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope
    • 10.1016/j.ssc.2011.05.045
    • Polyakov B, Dorogin L M, Vlassov S, Kink I, Lohmus A, Romanov A E, Lohmus R. Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Commun 151: 1244–1247 (2011)
    • (2011) Solid State Commun , vol.151 , pp. 1244-1247
    • Polyakov, B.1    Dorogin, L.M.2    Vlassov, S.3    Kink, I.4    Lohmus, A.5    Romanov, A.E.6    Lohmus, R.7
  • 44
    • 77952886174 scopus 로고    scopus 로고
    • Friction and shear strength at the nanowire-substrate interfaces
    • 10.1007/s11671-009-9478-4
    • Zhu Y, Qin Q, Gu Y, Wang Z. Friction and shear strength at the nanowire-substrate interfaces. Nanoscale Res Lett 5: 291–295 (2009)
    • (2009) Nanoscale Res Lett , vol.5 , pp. 291-295
    • Zhu, Y.1    Qin, Q.2    Gu, Y.3    Wang, Z.4
  • 46
    • 84883258663 scopus 로고    scopus 로고
    • Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM
    • 10.1039/c3nr34029e
    • Kim H J, Kang K H, Kim D E. Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5: 6081–6087 (2013)
    • (2013) Nanoscale , vol.5 , pp. 6081-6087
    • Kim, H.J.1    Kang, K.H.2    Kim, D.E.3
  • 47
    • 80053315779 scopus 로고    scopus 로고
    • Static friction between silicon nanowires and elastomeric substrates
    • 10.1021/nn202343w
    • Qin Q, Zhu Y. Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5: 7404–7410 (2011)
    • (2011) ACS Nano , vol.5 , pp. 7404-7410
    • Qin, Q.1    Zhu, Y.2
  • 48
    • 84855525758 scopus 로고    scopus 로고
    • Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface
    • 10.1557/jmr.2011.339
    • Dorogin L M, Polyakov B, Petruhins A, Vlassov S, Lõhmus R, Kink I, Romanov A E. Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J Mater Res 27: 580–585 (2012)
    • (2012) J Mater Res , vol.27 , pp. 580-585
    • Dorogin, L.M.1    Polyakov, B.2    Petruhins, A.3    Vlassov, S.4    Lõhmus, R.5    Kink, I.6    Romanov, A.E.7
  • 51
    • 0034648767 scopus 로고    scopus 로고
    • 2 nanoparticles with ultra-low friction and wear
    • 10.1038/35025020
    • 2 nanoparticles with ultra-low friction and wear. Nature 407: 164–167 (2000)
    • (2000) Nature , vol.407 , pp. 164-167
    • Chhowalla, M.1    Amaratunga, G.A.J.2
  • 52
    • 77954952710 scopus 로고
    • Applications of solid lubricant films in spacecraft
    • 10.1016/S0257-8972(07)80062-4
    • Hilton M R, Fleischauer P D. Applications of solid lubricant films in spacecraft. Surf Coat Tech 54–55: 435–441 (1992)
    • (1992) Surf Coat Tech , vol.54-55 , pp. 435-441
    • Hilton, M.R.1    Fleischauer, P.D.2
  • 53
    • 0000439536 scopus 로고
    • Some observations on the frictional behaviour of boron nitride and of graphite
    • 10.1016/0043-1648(60)90292-1
    • Rowe G W. Some observations on the frictional behaviour of boron nitride and of graphite. Wear 3: 274–285 (1960)
    • (1960) Wear , vol.3 , pp. 274-285
    • Rowe, G.W.1
  • 54
    • 70249114069 scopus 로고    scopus 로고
    • Comparison of frictional forces on graphene and graphite
    • 10.1088/0957-4484/20/32/325701
    • Lee H, Lee N, Seo Y, Eom J, Lee S. Comparison of frictional forces on graphene and graphite. Nanotechnology 20: 325701 (2009)
    • (2009) Nanotechnology , vol.20 , pp. 325701
    • Lee, H.1    Lee, N.2    Seo, Y.3    Eom, J.4    Lee, S.5
  • 57
    • 78649704450 scopus 로고    scopus 로고
    • Li Q, Lee C, Carpick R W, Hone J. Substrate effect on thickness-dependent friction on graphene, (b) 247: 2909–2914
    • Li Q, Lee C, Carpick R W, Hone J. Substrate effect on thickness-dependent friction on graphene. Physica Status Solidi (b) 247: 2909–2914
    • Physica Status Solidi
  • 59
    • 84856487154 scopus 로고    scopus 로고
    • Effect of elastic deformation on frictional properties of few-layer graphene
    • 10.1103/PhysRevB.85.035412
    • Smolyanitsky A, Killgore J P, Tewary V K. Effect of elastic deformation on frictional properties of few-layer graphene. Phys Rev B 85: 035412 (2012)
    • (2012) Phys Rev B , vol.85 , pp. 035412
    • Smolyanitsky, A.1    Killgore, J.P.2    Tewary, V.K.3
  • 60
    • 84871205793 scopus 로고    scopus 로고
    • Role of wrinkle height in friction variation with number of graphene layers
    • 10.1063/1.4768909
    • Ye Z, Tang C, Dong Y, Martini A. Role of wrinkle height in friction variation with number of graphene layers. J Appl Phys 112: 116102 (2012)
    • (2012) J Appl Phys , vol.112 , pp. 116102
    • Ye, Z.1    Tang, C.2    Dong, Y.3    Martini, A.4
  • 62
    • 84901663264 scopus 로고    scopus 로고
    • Frictional behavior of atomically-thin sheets hexagonal-shaped graphene islands grown on copper by chemical vapor deposition
    • 10.1021/nn501085g
    • Egberts P, Han G H, Liu X Z, Johnson A T C, Carpick R W. Frictional behavior of atomically-thin sheets hexagonal-shaped graphene islands grown on copper by chemical vapor deposition. ACS Nano 8: 5010–5021 (2014)
    • (2014) ACS Nano , vol.8 , pp. 5010-5021
    • Egberts, P.1    Han, G.H.2    Liu, X.Z.3    Johnson, A.T.C.4    Carpick, R.W.5
  • 64
    • 77955409226 scopus 로고    scopus 로고
    • Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy
    • 10.1103/PhysRevB.81.155412
    • Filleter T, Bennewitz R. Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys Rev B 81: 155412 (2010)
    • (2010) Phys Rev B , vol.81 , pp. 155412
    • Filleter, T.1    Bennewitz, R.2
  • 66
    • 79960002959 scopus 로고    scopus 로고
    • Frictional characteristics of exfoliated and epitaxial graphene
    • 10.1016/j.carbon.2011.05.046
    • Shin Y J, Stromberg R, Nay R, Huang H, Wee A T S, Yang H, Bhatia C S. Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49: 4070–4073 (2011)
    • (2011) Carbon , vol.49 , pp. 4070-4073
    • Shin, Y.J.1    Stromberg, R.2    Nay, R.3    Huang, H.4    Wee, A.T.S.5    Yang, H.6    Bhatia, C.S.7
  • 67
    • 42649109354 scopus 로고    scopus 로고
    • Scanning probe microscopy study of exfoliated oxidized graphene sheets
    • 10.1016/j.susc.2008.02.025
    • Pandey D, Reifenberger R, Piner R. Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf Sci 602: 1607–1613 (2008)
    • (2008) Surf Sci , vol.602 , pp. 1607-1613
    • Pandey, D.1    Reifenberger, R.2    Piner, R.3
  • 68
    • 84866856385 scopus 로고    scopus 로고
    • Nanoscale frictional characteristics of graphene nanoribbons
    • 10.1063/1.4752724
    • Zhang J, Lu W, Tour J M, Lou J. Nanoscale frictional characteristics of graphene nanoribbons. Appl Phys Lett 101: 123104 (2012)
    • (2012) Appl Phys Lett , vol.101 , pp. 123104
    • Zhang, J.1    Lu, W.2    Tour, J.M.3    Lou, J.4
  • 69
    • 84866997709 scopus 로고    scopus 로고
    • Atomic-scale friction in graphene oxide: An interfacial interaction perspective from first-principles calculations
    • 10.1103/PhysRevB.86.125436
    • Wang L F, Ma T B, Hu Y Z, Wang H. Atomic-scale friction in graphene oxide: An interfacial interaction perspective from first-principles calculations. Phys Rev B 86: 125436 (2012)
    • (2012) Phys Rev B , vol.86 , pp. 125436
    • Wang, L.F.1    Ma, T.B.2    Hu, Y.Z.3    Wang, H.4
  • 70
    • 84869990436 scopus 로고    scopus 로고
    • Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
    • Deng Z, Smolyanitsky A, Li Q, Feng X Q, Cannara R J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat Mater 11: 1032–1037 (2012)
    • (2012) Nat Mater , vol.11 , pp. 1032-1037
    • Deng, Z.1    Smolyanitsky, A.2    Li, Q.3    Feng, X.Q.4    Cannara, R.J.5
  • 72
    • 84870921161 scopus 로고    scopus 로고
    • Enhanced nanoscale friction on fluorinated graphene
    • 10.1021/nl204019k
    • Kwon S, Ko J H, Jeon K J, Kim Y H, Park J Y. Enhanced nanoscale friction on fluorinated graphene. Nano Lett 12: 6043–6048 (2012)
    • (2012) Nano Lett , vol.12 , pp. 6043-6048
    • Kwon, S.1    Ko, J.H.2    Jeon, K.J.3    Kim, Y.H.4    Park, J.Y.5
  • 73
    • 57949107977 scopus 로고    scopus 로고
    • Friction at atomic-scale surface steps: Experiment and theory
    • 10.1103/PhysRevLett.101.246105
    • Hölscher H, Ebeling D, Schwarz U D. Friction at atomic-scale surface steps: Experiment and theory. Phys Rev Lett 101: 246105 (2008)
    • (2008) Phys Rev Lett , vol.101 , pp. 246105
    • Hölscher, H.1    Ebeling, D.2    Schwarz, U.D.3
  • 74
    • 79958282083 scopus 로고    scopus 로고
    • A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube
    • 10.1016/j.carbon.2011.05.004
    • Liu P, Zhang Y W. A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube. Carbon 49: 3687–3697 (2011)
    • (2011) Carbon , vol.49 , pp. 3687-3697
    • Liu, P.1    Zhang, Y.W.2
  • 77
    • 11244351665 scopus 로고    scopus 로고
    • Model calculations of superlubricity of graphite
    • 10.1103/PhysRevB.70.165418
    • Verhoeven G S, Dienwiebel M, Frenken J W. Model calculations of superlubricity of graphite. Physl Rev B 70: 165418 (2004)
    • (2004) Physl Rev B , vol.70 , pp. 165418
    • Verhoeven, G.S.1    Dienwiebel, M.2    Frenken, J.W.3
  • 78
    • 35648964797 scopus 로고    scopus 로고
    • Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study
    • 10.1103/PhysRevB.76.155429
    • Guo Y, Guo W, Chen C. Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study. Phys Rev B 76: 155429 (2007)
    • (2007) Phys Rev B , vol.76 , pp. 155429
    • Guo, Y.1    Guo, W.2    Chen, C.3
  • 79
    • 69549116237 scopus 로고    scopus 로고
    • Atomistic simulations of the sliding friction of graphene flakes
    • 10.1140/epjb/e2009-00239-7
    • Bonelli F, Manini N, Cadelano E, Colombo L. Atomistic simulations of the sliding friction of graphene flakes. Eur Phys J B 70: 449–459 (2009)
    • (2009) Eur Phys J B , vol.70 , pp. 449-459
    • Bonelli, F.1    Manini, N.2    Cadelano, E.3    Colombo, L.4
  • 80
    • 33846893660 scopus 로고    scopus 로고
    • Fluid flow in carbon nanotubes and nanopipes
    • 10.1038/nnano.2006.175
    • Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes. Nat Nano 2: 87–94 (2007)
    • (2007) Nat Nano , vol.2 , pp. 87-94
    • Whitby, M.1    Quirke, N.2
  • 81
    • 27744446445 scopus 로고    scopus 로고
    • Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes
    • 10.1038/438044a
    • Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 438: 44 (2005)
    • (2005) Nature , vol.438 , pp. 44
    • Majumder, M.1    Chopra, N.2    Andrews, R.3    Hinds, B.J.4
  • 83
    • 84855976852 scopus 로고    scopus 로고
    • Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations
    • 10.1063/1.3675904
    • Kannam S K, Todd B D, Hansen J S, Daivis P J. Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. J Chem Phys 136: 024705 (2012)
    • (2012) J Chem Phys , vol.136 , pp. 024705
    • Kannam, S.K.1    Todd, B.D.2    Hansen, J.S.3    Daivis, P.J.4
  • 86
    • 84901252330 scopus 로고    scopus 로고
    • Generating electricity by moving a droplet of ionic liquid along graphene
    • 10.1038/nnano.2014.56
    • Yin J, Li X, Yu J, Zhang Z, Zhou J, Guo W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nano 9: 378–383 (2014)
    • (2014) Nat Nano , vol.9 , pp. 378-383
    • Yin, J.1    Li, X.2    Yu, J.3    Zhang, Z.4    Zhou, J.5    Guo, W.6
  • 90
    • 84877692906 scopus 로고    scopus 로고
    • Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen
    • 10.1016/j.carbon.2013.03.006
    • Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59: 167–175 (2013)
    • (2013) Carbon , vol.59 , pp. 167-175
    • Berman, D.1    Erdemir, A.2    Sumant, A.V.3
  • 91
    • 84894204123 scopus 로고    scopus 로고
    • Li X, Yin J, Zhou J, Guo W. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation, 25: 105701
    • Li X, Yin J, Zhou J, Guo W. Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 25: 105701 (2014)
    • (2014) Nanotechnology
  • 92
    • 83555174947 scopus 로고    scopus 로고
    • Frictional behavior of oxide graphene nanosheets as water-base lubricant additive
    • 10.1007/s00339-011-6636-1
    • Song H-J, Li N. Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Appl Phys A 105: 827–832 (2011)
    • (2011) Appl Phys A , vol.105 , pp. 827-832
    • Song, H.-J.1    Li, N.2
  • 93
    • 84879172183 scopus 로고    scopus 로고
    • Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water
    • 10.1016/j.wear.2012.12.059
    • Cho D H, Kim J S, Kwon S H, Lee C, Lee Y Z. Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear 302: 981–986 (2013)
    • (2013) Wear , vol.302 , pp. 981-986
    • Cho, D.H.1    Kim, J.S.2    Kwon, S.H.3    Lee, C.4    Lee, Y.Z.5
  • 94
    • 84875846686 scopus 로고    scopus 로고
    • Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite
    • 10.1016/j.compositesa.2013.03.001
    • Ren G, Zhang Z, Zhu X, Ge B, Guo F, Men X, Liu W. Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite. Compos Part A: Appl Sci Manuf 49: 157–164 (2013)
    • (2013) Compos Part A: Appl Sci Manuf , vol.49 , pp. 157-164
    • Ren, G.1    Zhang, Z.2    Zhu, X.3    Ge, B.4    Guo, F.5    Men, X.6    Liu, W.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.