메뉴 건너뛰기




Volumn 157, Issue 6, 2016, Pages 2259-2269

Clock and BMAL1 regulate muscle insulin sensitivity via SIRT1 in male mice

Author keywords

[No Author keywords available]

Indexed keywords

INSULIN; MYOSIN; RESVERATROL; SIRTUIN 1; SMALL INTERFERING RNA; TRANSCRIPTION FACTOR ARNTL; TRANSCRIPTION FACTOR CLOCK; ARNTL PROTEIN, MOUSE; CLOCK PROTEIN, MOUSE;

EID: 84974559569     PISSN: 00137227     EISSN: 19457170     Source Type: Journal    
DOI: 10.1210/en.2015-2027     Document Type: Article
Times cited : (73)

References (56)
  • 1
    • 66149109671 scopus 로고    scopus 로고
    • Metabolism control by the circadian clock and vice versa
    • Eckel-Mahan K, Sassone-Corsi P. Metabolism control by the circadian clock and vice versa. Nat Struct Mol Biol. 2009;16:462-467.
    • (2009) Nat Struct Mol Biol. , vol.16 , pp. 462-467
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 2
    • 34447094083 scopus 로고    scopus 로고
    • The relationship between nutrition and circadian rhythms in mammals
    • Froy O. The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol. 2007;28:61-71.
    • (2007) Front Neuroendocrinol. , vol.28 , pp. 61-71
    • Froy, O.1
  • 3
    • 84901843956 scopus 로고    scopus 로고
    • Circadian misalignment and health
    • Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry. 2014;26:139-154.
    • (2014) Int Rev Psychiatry. , vol.26 , pp. 139-154
    • Baron, K.G.1    Reid, K.J.2
  • 4
    • 77949269038 scopus 로고    scopus 로고
    • Effects of circadian disruption on the cardiometabolic system
    • Ruger M, Scheer FA. Effects of circadian disruption on the cardiometabolic system. Rev Endocr Metab Disord. 2009;10:245-260.
    • (2009) Rev Endocr Metab Disord. , vol.10 , pp. 245-260
    • Ruger, M.1    Scheer, F.A.2
  • 6
    • 84859524682 scopus 로고    scopus 로고
    • Insulin resistance and type 2 diabetes
    • Taylor R. Insulin resistance and type 2 diabetes. Diabetes. 2012;61:778-779.
    • (2012) Diabetes , vol.61 , pp. 778-779
    • Taylor, R.1
  • 7
    • 17144461665 scopus 로고    scopus 로고
    • Associations of dietary fiber with glucose metabolism in nondiabetic relatives of subjects with type 2 diabetes-the Botnia Dietary Study
    • Ylonen K, Saloranta C, Kronberg-Kippila C, et al. Associations of dietary fiber with glucose metabolism in nondiabetic relatives of subjects with type 2 diabetes-the Botnia Dietary Study. Diabetes Care. 2003;26:1979-1985.
    • (2003) Diabetes Care , vol.26 , pp. 1979-1985
    • Ylonen, K.1    Saloranta, C.2    Kronberg-Kippila, C.3
  • 8
    • 84893977539 scopus 로고    scopus 로고
    • Benefits of caloric restriction for cardiometabolic health, including type 2 diabetes mellitus risk
    • Soare A, Weiss EP, Pozzilli P. Benefits of caloric restriction for cardiometabolic health, including type 2 diabetes mellitus risk. Diabetes Metab Res Rev. 2014;30:41-47.
    • (2014) Diabetes Metab Res Rev. , vol.30 , pp. 41-47
    • Soare, A.1    Weiss, E.P.2    Pozzilli, P.3
  • 9
    • 77954942502 scopus 로고    scopus 로고
    • Depression and insulin resistance cross-sectional associations in young adults
    • Pearson S, Schmidt M, Patton G, et al. Depression and insulin resistance cross-sectional associations in young adults. Diabetes Care. 2010;33:1128-1133.
    • (2010) Diabetes Care. , vol.33 , pp. 1128-1133
    • Pearson, S.1    Schmidt, M.2    Patton, G.3
  • 11
    • 84896028075 scopus 로고    scopus 로고
    • Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss
    • Leproult R, Holmback U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63:1860-1869.
    • (2014) Diabetes , vol.63 , pp. 1860-1869
    • Leproult, R.1    Holmback, U.2    Van Cauter, E.3
  • 14
    • 84875695721 scopus 로고    scopus 로고
    • Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity
    • Coomans CP, van den Berg SA, Houben T, et al. Detrimental effects of constant light exposure and high-fat diet on circadian energy metabolism and insulin sensitivity. FASEB J. 2013;27:1721-1732.
    • (2013) FASEB J , vol.27 , pp. 1721-1732
    • Coomans, C.P.1    Van Den Berg, S.A.2    Houben, T.3
  • 15
    • 84901592077 scopus 로고    scopus 로고
    • CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1
    • Zhou B, Zhang Y, Zhang F, et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology. 2014;59:2196-2206.
    • (2014) Hepatology , vol.59 , pp. 2196-2206
    • Zhou, B.1    Zhang, Y.2    Zhang, F.3
  • 17
    • 77954848215 scopus 로고    scopus 로고
    • Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
    • Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627-631.
    • (2010) Nature , vol.466 , pp. 627-631
    • Marcheva, B.1    Ramsey, K.M.2    Buhr, E.D.3
  • 18
    • 70449441222 scopus 로고    scopus 로고
    • The role of cell-specific circadian clocks in metabolism and disease
    • Bray MS, Young ME. The role of cell-specific circadian clocks in metabolism and disease. Obes Rev. 2009;10(suppl 2):6-13.
    • (2009) Obes Rev. , vol.10 , pp. 6-13
    • Bray, M.S.1    Young, M.E.2
  • 19
    • 14044264801 scopus 로고    scopus 로고
    • BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
    • Rudic RD, McNamara P, Curtis AM, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2:e377.
    • (2004) PLoS Biol. , vol.2 , pp. e377
    • Rudic, R.D.1    McNamara, P.2    Curtis, A.M.3
  • 20
    • 54449085416 scopus 로고    scopus 로고
    • Physiological significance of a peripheral tissue circadian clock
    • Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA. 2008;105:15172-15177.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 15172-15177
    • Lamia, K.A.1    Storch, K.F.2    Weitz, C.J.3
  • 21
    • 75549085755 scopus 로고    scopus 로고
    • Skeletal muscle insulin resistance is the primary defect in type 2 diabetes
    • De Fronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32:S157-S163.
    • (2009) Diabetes Care , vol.32 , pp. S157-S163
    • De Fronzo, R.A.1    Tripathy, D.2
  • 22
    • 80051971972 scopus 로고    scopus 로고
    • Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals
    • Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci USA. 2011;108:13705-13709.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 13705-13709
    • Rabol, R.1    Petersen, K.F.2    Dufour, S.3    Flannery, C.4    Shulman, G.I.5
  • 23
    • 84895128336 scopus 로고    scopus 로고
    • Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock
    • Dyar KA, Ciciliot S, Wright LE, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3:29-41.
    • (2014) Mol Metab. , vol.3 , pp. 29-41
    • Dyar, K.A.1    Ciciliot, S.2    Wright, L.E.3
  • 24
    • 34548857700 scopus 로고    scopus 로고
    • SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B
    • Sun C, Zhang F, Ge XJ, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007;6:307-319.
    • (2007) Cell Metab. , vol.6 , pp. 307-319
    • Sun, C.1    Zhang, F.2    Ge, X.J.3
  • 27
    • 36248975293 scopus 로고    scopus 로고
    • SIRT1 transgenic mice show phenotypes resembling calorie restriction
    • Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6:759-767.
    • (2007) Aging Cell. , vol.6 , pp. 759-767
    • Bordone, L.1    Cohen, D.2    Robinson, A.3
  • 28
    • 79955661493 scopus 로고    scopus 로고
    • Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver
    • Li Y, Xu S, Giles A, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J. 2011;25:1664-1679.
    • (2011) FASEB J. , vol.25 , pp. 1664-1679
    • Li, Y.1    Xu, S.2    Giles, A.3
  • 29
    • 80555146753 scopus 로고    scopus 로고
    • Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
    • Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O, Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest. 2011;121:4477-4490.
    • (2011) J Clin Invest. , vol.121 , pp. 4477-4490
    • Wang, R.H.1    Kim, H.S.2    Xiao, C.3    Xu, X.4    Gavrilova, O.5    Deng, C.X.6
  • 30
    • 80555142897 scopus 로고    scopus 로고
    • Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
    • Schenk S, McCurdy CE, Philp A, et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest. 2011;121:4281-4288.
    • (2011) J Clin Invest. , vol.121 , pp. 4281-4288
    • Schenk, S.1    McCurdy, C.E.2    Philp, A.3
  • 31
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337-342.
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1    Pearson, K.J.2    Price, N.L.3
  • 32
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell. 2006;127:1109-1122.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3
  • 33
    • 80052910300 scopus 로고    scopus 로고
    • Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients
    • Brasnyo P, Molnar GA, Mohas M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. 2011;106:383-389.
    • (2011) Br J Nutr. , vol.106 , pp. 383-389
    • Brasnyo, P.1    Molnar, G.A.2    Mohas, M.3
  • 34
    • 80455143206 scopus 로고    scopus 로고
    • Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
    • Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. CellMetab. 2011;14:612-622.
    • (2011) CellMetab , vol.14 , pp. 612-622
    • Timmers, S.1    Konings, E.2    Bilet, L.3
  • 35
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1    Gatfield, D.2    Stratmann, M.3
  • 36
    • 47549088250 scopus 로고    scopus 로고
    • The NAD (+)-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD (+)-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3
  • 37
    • 84864265171 scopus 로고    scopus 로고
    • Palmitate contributes to insulin resistance through downregulation of the Src-mediated phosphorylation of Akt in C2C12 myotubes
    • Feng XT, Wang TZ, Leng J, et al. Palmitate contributes to insulin resistance through downregulation of the Src-mediated phosphorylation of Akt in C2C12 myotubes. Biosci Biotechnol Biochem. 2012;76:1356-1361.
    • (2012) Biosci Biotechnol Biochem , vol.76 , pp. 1356-1361
    • Feng, X.T.1    Wang, T.Z.2    Leng, J.3
  • 38
    • 29344471474 scopus 로고    scopus 로고
    • Palmitate induces tumor necrosis factor-α expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-κB activation
    • Jove M, Planavila A, Sanchez RM, Merlos M, Laguna JC, Vazquez-Carrera M. Palmitate induces tumor necrosis factor-α expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-κB activation. Endocrinology. 2006;147:552-561.
    • (2006) Endocrinology , vol.147 , pp. 552-561
    • Jove, M.1    Planavila, A.2    Sanchez, R.M.3    Merlos, M.4    Laguna, J.C.5    Vazquez-Carrera, M.6
  • 39
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
    • Price NL, Gomes AP, Ling AJY, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. CellMetab. 2012;15:675-690.
    • (2012) CellMetab. , vol.15 , pp. 675-690
    • Price, N.L.1    Gomes, A.P.2    Ling, A.J.Y.3
  • 41
    • 77950538806 scopus 로고    scopus 로고
    • C/EBPα regulates SIRT1 expression during adipogenesis
    • Jin Q, Zhang F, Yan T, et al. C/EBPα regulates SIRT1 expression during adipogenesis. Cell Res. 2010;20:470-479.
    • (2010) Cell Res. , vol.20 , pp. 470-479
    • Jin, Q.1    Zhang, F.2    Yan, T.3
  • 42
    • 0344994573 scopus 로고    scopus 로고
    • Reporter cell lines to study the estrogenic effects of xenoestrogens
    • Balaguer P, Francois F, Comunale F, et al. Reporter cell lines to study the estrogenic effects of xenoestrogens. Sci Total Environ. 1999;233:47-56.
    • (1999) Sci Total Environ. , vol.233 , pp. 47-56
    • Balaguer, P.1    Francois, F.2    Comunale, F.3
  • 43
    • 0141739492 scopus 로고    scopus 로고
    • Intracellular production of DNA enzyme by a novel single-stranded DNA expression vector
    • Chen Y, McMicken HW. Intracellular production of DNA enzyme by a novel single-stranded DNA expression vector. Gene Ther. 2003;10:1776-1780.
    • (2003) Gene Ther. , vol.10 , pp. 1776-1780
    • Chen, Y.1    McMicken, H.W.2
  • 44
    • 77955983063 scopus 로고    scopus 로고
    • Circadian control of global gene expression patterns
    • Doherty CJ, Kay SA. Circadian control of global gene expression patterns. Annu Rev Genet. 2010;44:419-444.
    • (2010) Annu Rev Genet. , vol.44 , pp. 419-444
    • Doherty, C.J.1    Kay, S.A.2
  • 45
    • 4544333235 scopus 로고    scopus 로고
    • Circadian rhythm of glucose uptake in cultures of skeletal muscle cells and adipocytes in Wistar-Kyoto, Wistar, Goto-Kakizaki, and spontaneously hypertensive rats
    • Feneberg R, Lemmer B. Circadian rhythm of glucose uptake in cultures of skeletal muscle cells and adipocytes in Wistar-Kyoto, Wistar, Goto-Kakizaki, and spontaneously hypertensive rats. Chronobiol Int. 2004;21:521-538.
    • (2004) Chronobiol Int. , vol.21 , pp. 521-538
    • Feneberg, R.1    Lemmer, B.2
  • 47
    • 84862008430 scopus 로고    scopus 로고
    • Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
    • Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848-860.
    • (2012) Cell Metab. , vol.15 , pp. 848-860
    • Hatori, M.1    Vollmers, C.2    Zarrinpar, A.3
  • 48
    • 31144434817 scopus 로고    scopus 로고
    • Constant darkness is a circadian metabolic signal in mammals
    • Zhang JF, Kaasik K, Blackburn MR, Lee CC. Constant darkness is a circadian metabolic signal in mammals. Nature. 2006;439:340-343.
    • (2006) Nature , vol.439 , pp. 340-343
    • Zhang, J.F.1    Kaasik, K.2    Blackburn, M.R.3    Lee, C.C.4
  • 51
    • 0043244921 scopus 로고    scopus 로고
    • Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
    • Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12:51-62.
    • (2003) Mol Cell. , vol.12 , pp. 51-62
    • Fulco, M.1    Schiltz, R.L.2    Iezzi, S.3
  • 52
    • 78650501389 scopus 로고    scopus 로고
    • CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function
    • Andrews JL, Zhang X, McCarthy JJ, et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA. 2010;107:19090-19095.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 19090-19095
    • Andrews, J.L.1    Zhang, X.2    McCarthy, J.J.3
  • 53
    • 69249116960 scopus 로고    scopus 로고
    • SIRT1 controls the transcription of the peroxisome proliferatoractivated receptor-7 co-activator-1α (PGC-1 alpha) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD
    • Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. SIRT1 controls the transcription of the peroxisome proliferatoractivated receptor-7 co-activator-1α (PGC-1 alpha) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD. J Biol Chem. 2009;284:21872-21880.
    • (2009) J Biol Chem. , vol.284 , pp. 21872-21880
    • Amat, R.1    Planavila, A.2    Chen, S.L.3    Iglesias, R.4    Giralt, M.5    Villarroya, F.6
  • 54
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
    • Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 2007;26:1913-1923.
    • (2007) EMBO J. , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3
  • 55
    • 34249275727 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1a integrates the mammalian clock and energy metabolism
    • Liu C, Li SM, Liu TH, Borjigin J, Lin JD. Transcriptional coactivator PGC-1a integrates the mammalian clock and energy metabolism. Nature. 2007;447:477-481.
    • (2007) Nature , vol.447 , pp. 477-481
    • Liu, C.1    Li, S.M.2    Liu, T.H.3    Borjigin, J.4    Lin, J.D.5
  • 56
    • 84939936660 scopus 로고    scopus 로고
    • SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II-V functions in individual subsarcolemmal and intermyofibrillar mitochondria
    • Zhang HH, Qin GJ, Li XL, et al. SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II-V functions in individual subsarcolemmal and intermyofibrillar mitochondria. J Physiol Biochem. 2015;71:177-190.
    • (2015) J Physiol Biochem. , vol.71 , pp. 177-190
    • Zhang, H.H.1    Qin, G.J.2    Li, X.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.