메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2264-2271

Robust Boltzmann Machines for recognition and denoising

Author keywords

[No Author keywords available]

Indexed keywords

BOLTZMANN MACHINES; DE-NOISING; DENSITY MODELING; FACE DATABASE; NOISY DATA; SCALE MIXTURES; SPATIAL STRUCTURE; SPEECH DATA; STANDARD ALGORITHMS; VISUAL RECOGNITION;

EID: 84866720201     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247936     Document Type: Conference Paper
Times cited : (171)

References (29)
  • 1
    • 1842705510 scopus 로고    scopus 로고
    • 4
    • The yale face database., 2006. http://cvc.yale.edu/projects/yalefaces/ yalefaces.html. 4
    • (2006) The Yale Face Database
  • 2
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • 3
    • S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. PAMI, PAMI-6(6):721-741, 1984. 3
    • (1984) PAMI , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • 2
    • G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313:504-507, 2006. 2
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 5
    • 0004262735 scopus 로고
    • Wiley series in probability and mathematical statistics. John Wiley & Sons, Inc., 3
    • P. J. Huber. Robust Statistics. Wiley series in probability and mathematical statistics. John Wiley & Sons, Inc., 1981. 3
    • (1981) Robust Statistics
    • Huber, P.J.1
  • 7
    • 34948885739 scopus 로고    scopus 로고
    • Generative model for layers of appearance and deformation
    • 1
    • A. Kannan, N. Jojic, and B. J. Frey. Generative model for layers of appearance and deformation. In AISTATS, 2005, 2005. 1
    • (2005) AISTATS, 2005
    • Kannan, A.1    Jojic, N.2    Frey, B.J.3
  • 9
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov. 1
    • Y. LeCun, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, Nov. 1998. 1
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bengio, Y.2    Haffner, P.3
  • 10
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 2
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Intl. Conf. on Machine Learning, pages 609-616, 2009. 2
    • (2009) Intl. Conf. on Machine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 11
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60:91-110, 2004. 1
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 12
    • 0037276932 scopus 로고    scopus 로고
    • Face recognition using kernel direct discriminant analysis algorithms
    • Jan. 6, 7
    • J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Face recognition using kernel direct discriminant analysis algorithms. IEEE-NN, 14:117-126, Jan. 2003. 6, 7
    • (2003) IEEE-NN , vol.14 , pp. 117-126
    • Lu, J.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 15
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • 1
    • M. Ranzato, J. Susskind, V. Mnih, and G. Hinton. On Deep Generative Models with Applications to Recognition. In CVPR, 2011. 1
    • (2011) CVPR
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.4
  • 17
    • 79951571992 scopus 로고    scopus 로고
    • Learning a generative model of images by factoring appearance and shape
    • 1
    • N. L. Roux, N. Heess, J. Shotton, and J. M. Winn. Learning a generative model of images by factoring appearance and shape. Neural Computation, 23(3):593-650, 2011. 1
    • (2011) Neural Computation , vol.23 , Issue.3 , pp. 593-650
    • Roux, N.L.1    Heess, N.2    Shotton, J.3    Winn, J.M.4
  • 18
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart and J. L. McClelland, editors, chapter 6, MIT Press, Cambridge, 2
    • P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, chapter 6, pages 194-281. MIT Press, Cambridge, 1986. 2
    • (1986) Parallel Distributed Processing , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 20
    • 15844362098 scopus 로고    scopus 로고
    • Robust bayesian mixture modelling
    • 3
    • M. Svensén and C. M. Bishop. Robust bayesian mixture modelling. Neuro-computing, 64:235-252, 2005. 3
    • (2005) Neuro-computing , vol.64 , pp. 235-252
    • Svensén, M.1    Bishop, C.M.2
  • 22
    • 80052914864 scopus 로고    scopus 로고
    • Convolutional learning of spatio-temporal features
    • Springer, 2
    • G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. In ECCV 2010. Springer, 2010. 2
    • (2010) ECCV 2010
    • Taylor, G.W.1    Fergus, R.2    Lecun, Y.3    Bregler, C.4
  • 23
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • 4
    • T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In Intl. Conf. on Machine Learning, volume 307, pages 1064-1071, 2008. 4
    • (2008) Intl. Conf. on Machine Learning , vol.307 , pp. 1064-1071
    • Tieleman, T.1
  • 24
    • 70049098965 scopus 로고    scopus 로고
    • Using fast weights to improve persistent contrastive divergence
    • ACM, 6
    • T. Tieleman and G. E. Hinton. Using fast weights to improve persistent contrastive divergence. In ICML, volume 382, page 130. ACM, 2009. 6
    • (2009) ICML , vol.382 , pp. 130
    • Tieleman, T.1    Hinton, G.E.2
  • 26
    • 1842733191 scopus 로고    scopus 로고
    • Greedy learning of multiple objects in images using robust statistics and factorial learning
    • May, 1
    • C. K. I.Williams and M. K. Titsias. Greedy learning of multiple objects in images using robust statistics and factorial learning. Neural Computation, 16(5):1039-1062, May 2004. 1
    • (2004) Neural Computation , vol.16 , Issue.5 , pp. 1039-1062
    • Williams, C.K.I.1    Titsias, M.K.2
  • 28
    • 33644756784 scopus 로고    scopus 로고
    • On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
    • 4
    • L. Younes. On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates. In Stochastics and Stochastics Models, pages 177-228, 1998. 4
    • (1998) Stochastics and Stochastics Models , pp. 177-228
    • Younes, L.1
  • 29
    • 77952735430 scopus 로고    scopus 로고
    • Face recognition with contiguous occlusion using markov random fields
    • IEEE, 1
    • Z. Zhou, A. Wagner, H. Mobahi, J. Wright, and Y. Ma. Face recognition with contiguous occlusion using markov random fields. In ICCV, pages 1050-1057. IEEE, 2009. 1
    • (2009) ICCV , pp. 1050-1057
    • Zhou, Z.1    Wagner, A.2    Mobahi, H.3    Wright, J.4    Ma, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.