메뉴 건너뛰기




Volumn 31, Issue 22, 2015, Pages 3625-3630

Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment

Author keywords

[No Author keywords available]

Indexed keywords

BINOMIAL DISTRIBUTION; GENE EXPRESSION PROFILING; GENETICS; NUCLEOTIDE SEQUENCE; PROCEDURES; REPRODUCIBILITY; SACCHAROMYCES CEREVISIAE; SEQUENCE ANALYSIS; STATISTICAL MODEL;

EID: 84947809158     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv425     Document Type: Article
Times cited : (58)

References (24)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders,S. and Huber,W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 2
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq - A Python framework to work with high-throughput sequencing data
    • Anders,S. et al. (2014) HTSeq - a Python framework to work with high-throughput sequencing data, Bioinformatics, 31, 166-169.
    • (2014) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1
  • 3
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • Auer,P.L. and Doerge,R.W. (2010) Statistical design and analysis of RNA sequencing data. Genetics, 185, 405-416.
    • (2010) Genetics , vol.185 , pp. 405-416
    • Auer, P.L.1    Doerge, R.W.2
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser B Methodol., 57, 289-300.
    • (1995) J. R. Stat. Soc. Ser B Methodol. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 84952503973 scopus 로고
    • A suggestion for using powerful and informative tests of normality
    • D'Agostino,R.B. et al. (1990) A suggestion for using powerful and informative tests of normality. Am. Stat., 44, 316-321.
    • (1990) Am. Stat. , vol.44 , pp. 316-321
    • D'Agostino, R.B.1
  • 6
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies,M.A. et al. (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform, 14, 671-683.
    • (2013) Brief Bioinform , vol.14 , pp. 671-683
    • Dillies, M.A.1
  • 7
    • 0001791523 scopus 로고
    • The significance of deviations from expectation in a poisson series
    • Fisher,R.A. (1950) The significance of deviations from expectation in a poisson series. Biometrics, 6, 17-24.
    • (1950) Biometrics , vol.6 , pp. 17-24
    • Fisher, R.A.1
  • 8
    • 78651289449 scopus 로고    scopus 로고
    • Ensembl 2011
    • Flicek,P. et al. (2011) Ensembl 2011. Nucleic Acids Res., 39, D800-D806.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D800-D806
    • Flicek, P.1
  • 9
    • 79960208246 scopus 로고    scopus 로고
    • Sequencing technology does not eliminate biological variability
    • Hansen,K.D. et al. (2011) Sequencing technology does not eliminate biological variability. Nat. Biotechnol., 29, 572-573.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 572-573
    • Hansen, K.D.1
  • 10
    • 77955298482 scopus 로고    scopus 로고
    • baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle,T.J. and Kelly,K.A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 11
    • 80052521697 scopus 로고    scopus 로고
    • Synthetic spike-in standards for RNA-seq experiments
    • Jiang,L. et al. (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res., 21, 1543-1551.
    • (2011) Genome Res. , vol.21 , pp. 1543-1551
    • Jiang, L.1
  • 12
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim,D. et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36.
    • (2013) Genome Biol. , vol.14 , pp. R36
    • Kim, D.1
  • 13
    • 84868010349 scopus 로고    scopus 로고
    • Revisiting global gene expression analysis
    • Loven,J. et al. (2012) Revisiting global gene expression analysis. Cell, 151, 476-482.
    • (2012) Cell , vol.151 , pp. 476-482
    • Loven, J.1
  • 14
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
    • (2008) Genome Res. , vol.18 , pp. 1509-1517
    • Marioni, J.C.1
  • 15
    • 84888294887 scopus 로고    scopus 로고
    • Transform methods for testing the negative binomial hypothesis
    • Meintanis,S. (2005) Transform methods for testing the negative binomial hypothesis. Statistica, 65, 293-300.
    • (2005) Statistica , vol.65 , pp. 293-300
    • Meintanis, S.1
  • 16
    • 46249106990 scopus 로고    scopus 로고
    • Mapping and quantifying mammalian transcriptomes by RNA-Seq
    • Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621-628.
    • (2008) Nat. Methods , vol.5 , pp. 621-628
    • Mortazavi, A.1
  • 17
    • 75949115042 scopus 로고    scopus 로고
    • RNA-Seq: A method for comprehensive transcriptome analysis
    • Chapter 4, Unit 4
    • Nagalakshmi,U. et al. (2010) RNA-Seq: a method for comprehensive transcriptome analysis. Curr. Protoc. Mol. Biol. Chapter 4, Unit 4, 11, 11-13.
    • (2010) Curr. Protoc. Mol. Biol. , vol.11 , pp. 11-13
    • Nagalakshmi, U.1
  • 18
    • 84883644707 scopus 로고    scopus 로고
    • Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    • Rapaport,F. et al. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95.
    • (2013) Genome Biol. , vol.14 , pp. R95
    • Rapaport, F.1
  • 19
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson,M.D. and Oshlack,A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol. , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 20
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • Robinson,M.D. and Smyth,G.K. (2008) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321-332.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 21
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: A bioconductor package for differential expression analysis of digital gene expression data
    • Robinson,M.D. et al. (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1
  • 23
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth,G.K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, 1-25.
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , pp. 1-25
    • Smyth, G.K.1
  • 24
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511-515.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.