메뉴 건너뛰기




Volumn , Issue , 2010, Pages 2863-2870

Anatomical parts-based regression using non-negative matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN IMAGES; DATA SETS; DIMENSIONALITY REDUCTION TECHNIQUES; GRADIENT SMOOTHING; LOCAL REGION; NONNEGATIVE MATRIX FACTORIZATION; STATISTICAL REGRESSION;

EID: 77956006317     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2010.5540022     Document Type: Conference Paper
Times cited : (8)

References (30)
  • 1
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • J. Ashburner and K. Friston. Voxel-based morphometry-the methods. Neuroimage, 11(6):805-821, 2000.
    • (2000) Neuroimage , vol.11 , Issue.6 , pp. 805-821
    • Ashburner, J.1    Friston, K.2
  • 3
    • 0030832881 scopus 로고    scopus 로고
    • The independent components of natural scenes are edge filters
    • A. Bell and T. Sejnowski. The independent components of natural scenes are edge filters. Vision research, 37(23):3327-3338, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.1    Sejnowski, T.2
  • 5
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon et al. Independent component analysis, a new concept? Signal processing, 36(3):287-314, 1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 7
    • 0035208958 scopus 로고    scopus 로고
    • Voxel-based morphometry using the RAVENS maps: Methods and validation using simulated longitudinal atrophy
    • C. Davatzikos, A. Genc, D. Xu, and S. Resnick. Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage, 14(6):1361-1369, 2001.
    • (2001) NeuroImage , vol.14 , Issue.6 , pp. 1361-1369
    • Davatzikos, C.1    Genc, A.2    Xu, D.3    Resnick, S.4
  • 10
    • 0031948556 scopus 로고    scopus 로고
    • White matter changes with normal aging
    • Guttmann et al. White matter changes with normal aging. Neurology, 50(4):972, 1998.
    • (1998) Neurology , vol.50 , Issue.4 , pp. 972
    • Guttmann1
  • 12
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heiler and C. Schnorr. Learning sparse representations by non-negative matrix factorization and sequential cone programming. The Journal of Machine Learning Research, 7:1407, 2006.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1407
    • Heiler, M.1    Schnorr, C.2
  • 13
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer. Non-negative matrix factorization with sparseness constraints. The Journal of Machine Learning Research, 5:1457-1469, 2004.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 19
    • 84950441056 scopus 로고
    • On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
    • K. Li. On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma. Journal of the American Statistical Association, 87(420):1025-1039, 1992.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.420 , pp. 1025-1039
    • Li, K.1
  • 21
    • 0029891767 scopus 로고    scopus 로고
    • Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging
    • M. Matsumae, R. Kikinis, et al. Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. Journal of neurosurgery, 84(6):982-991, 1996.
    • (1996) Journal of Neurosurgery , vol.84 , Issue.6 , pp. 982-991
    • Matsumae, M.1    Kikinis, R.2
  • 22
    • 33744831224 scopus 로고    scopus 로고
    • Effects of healthy aging measured by intracranial compartment volumes using a designed mr brain database
    • B
    • Z. Mortamet, B et al. Effects of healthy aging measured by intracranial compartment volumes using a designed mr brain database. LECTURE NOTES IN COMPUTER SCIENCE, 3749:383, 2005.
    • (2005) Lecture Notes in Computer Science , vol.3749 , pp. 383
    • Mortamet, Z.1
  • 23
    • 49449120034 scopus 로고
    • Hierarchical structure in perceptual representation
    • S. Palmer. Hierarchical structure in perceptual representation. Cognitive Psychology, 9(4):441-474, 1977.
    • (1977) Cognitive Psychology , vol.9 , Issue.4 , pp. 441-474
    • Palmer, S.1
  • 24
    • 70450208929 scopus 로고    scopus 로고
    • Nonnegative Matrix Factorization with Earth Movers Distance Metric
    • R. Sandler and M. Lindenbaum. Nonnegative Matrix Factorization with Earth Movers Distance Metric. CVPR, 2009.
    • (2009) CVPR
    • Sandler, R.1    Lindenbaum, M.2
  • 25
    • 7044260964 scopus 로고    scopus 로고
    • Advances in functional and structural MR image analysis and implementation as FSL
    • S. Smith, M. Jenkinson, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23:208-219, 2004.
    • (2004) Neuroimage , vol.23 , pp. 208-219
    • Smith, S.1    Jenkinson, M.2
  • 26
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 29
    • 11144327494 scopus 로고    scopus 로고
    • Fisher non-negative matrix factorization for learning local features
    • Citeseer
    • Y. Wang et al. Fisher non-negative matrix factorization for learning local features. In Proc. Asian Conf. on Comp. Vision, pages 27-30. Citeseer, 2004.
    • (2004) Proc. Asian Conf. on Comp. Vision , pp. 27-30
    • Wang, Y.1
  • 30
    • 65549131149 scopus 로고    scopus 로고
    • Bayesian analysis of neuroimaging data in FSL
    • M. Woolrich et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(1S1):173-186, 2009.
    • (2009) NeuroImage , vol.45 , Issue.1 S1 , pp. 173-186
    • Woolrich, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.