메뉴 건너뛰기




Volumn 25, Issue 15, 2009, Pages 1884-1890

Predictor correlation impacts machine learning algorithms: Implications for genomic studies

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COMPUTER PREDICTION; COMPUTER SIMULATION; CONTROLLED STUDY; EFFECT SIZE; GENE LINKAGE DISEQUILIBRIUM; GENOMICS; LEARNING ALGORITHM; MACHINE LEARNING; MONTE CARLO METHOD; PRIORITY JOURNAL; RANDOM FOREST; SINGLE NUCLEOTIDE POLYMORPHISM;

EID: 67650770061     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btp331     Document Type: Article
Times cited : (136)

References (28)
  • 1
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • Biau,G. et al. (2008) Consistency of random forests and other averaging classifiers. J. Mach. Learn. Res., 9, 2015-2033.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 2015-2033
    • Biau, G.1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman,L. (2001) Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 3
    • 34248632806 scopus 로고    scopus 로고
    • Bureau,A. et al. (2003) Mapping complex traits using Random Forests. BMC Genet., 4(Suppl. 1), S64.
    • Bureau,A. et al. (2003) Mapping complex traits using Random Forests. BMC Genet., 4(Suppl. 1), S64.
  • 4
    • 12744259874 scopus 로고    scopus 로고
    • Bureau,A. et al. (2005) Identifying SNPs predictive of phenotype using random forests. Genet. Epidemiol., 28, 171-182.
    • Bureau,A. et al. (2005) Identifying SNPs predictive of phenotype using random forests. Genet. Epidemiol., 28, 171-182.
  • 5
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • Dettling,M. (2004) BagBoosting for tumor classification with gene expression data. Bioinformatics, 20, 3583-3593.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 7
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte,R and Alvarez de Andrés,S. (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez de Andrés, S.2
  • 8
    • 33846937260 scopus 로고    scopus 로고
    • Repetitive sequence environment distinguishes housekeeping genes
    • Eller,C.D. et al. (2007) Repetitive sequence environment distinguishes housekeeping genes. Gene, 390, 153-165.
    • (2007) Gene , vol.390 , pp. 153-165
    • Eller, C.D.1
  • 9
    • 33749535056 scopus 로고    scopus 로고
    • Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals
    • Enot,D.P. et al. (2006) Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc. Natl Acad. Sci. USA, 103, 14865-14870.
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 14865-14870
    • Enot, D.P.1
  • 10
    • 0000667627 scopus 로고
    • Estimates of location based on rank tests
    • Hodges,J.R. and Lehmann,E.L. (1963) Estimates of location based on rank tests. Ann. Math. Stat., 34, 598-611.
    • (1963) Ann. Math. Stat , vol.34 , pp. 598-611
    • Hodges, J.R.1    Lehmann, E.L.2
  • 11
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: A conditional inference framework
    • Hothorn,T. et al. (2006) Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat., 15 651-674.
    • (2006) J. Comput. Graph. Stat , vol.15 , pp. 651-674
    • Hothorn, T.1
  • 12
    • 34547596338 scopus 로고    scopus 로고
    • MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features
    • Jiang,P. et al. (2007) MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res., 35, W339-W344.
    • (2007) Nucleic Acids Res , vol.35
    • Jiang, P.1
  • 13
    • 12744269194 scopus 로고    scopus 로고
    • Identifying interacting SNPs using Monte Carlo logic regression
    • Kooperberg,C. and Ruczinski,I. (2005) Identifying interacting SNPs using Monte Carlo logic regression. Genet. Epidemiol., 28, 157-170.
    • (2005) Genet. Epidemiol , vol.28 , pp. 157-170
    • Kooperberg, C.1    Ruczinski, I.2
  • 14
    • 33845238301 scopus 로고    scopus 로고
    • On the generation of correlated artificial binary data
    • Adaptive information systems and modeling in economics and management science, Vienna University of Economics. Available at, last accessed date December 30, 2008
    • Leisch,F. et al. (2008) On the generation of correlated artificial binary data. Adaptive information systems and modeling in economics and management science, Working paper series, Vienna University of Economics. Available at http://www.wu-wien.ac.at/am (last accessed date December 30, 2008).
    • (2008) Working paper series
    • Leisch, F.1
  • 15
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li,T. et al. (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20, 2429-2437.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1
  • 16
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw,A. and Weiner,M. (2002) Classification and regression by randomForest. R News, 2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Weiner, M.2
  • 17
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: Exploiting interactions using random forests
    • Lunetta,K.L. et al. (2004) Screening large-scale association study data: Exploiting interactions using random forests. BMC Genet., 5, 32.
    • (2004) BMC Genet , vol.5 , pp. 32
    • Lunetta, K.L.1
  • 18
    • 64549095229 scopus 로고    scopus 로고
    • Performance of random forest when SNPs are in linkage disequilibrium
    • Meng,Y.A. et al. (2009) Performance of random forest when SNPs are in linkage disequilibrium. BMC Bioinformatics, 10, 78.
    • (2009) BMC Bioinformatics , vol.10 , pp. 78
    • Meng, Y.A.1
  • 19
    • 0027290944 scopus 로고
    • Combining independent studies of a diagnostic test into a summary ROC curve: Data-analytic approaches and some additional considerations
    • Moses,L.E. et al. (1993) Combining independent studies of a diagnostic test into a summary ROC curve: Data-analytic approaches and some additional considerations. Stat. Med., 12, 1293-1316.
    • (1993) Stat. Med , vol.12 , pp. 1293-1316
    • Moses, L.E.1
  • 20
    • 38049089317 scopus 로고    scopus 로고
    • Stability of variable importance scores and rankings using statistical learning tools on single nucleotide polymorphisms (SNPs) and risk factors involved in gene-gene and gene-environment interaction
    • Nicodemus,K.K. et al. (2007) Stability of variable importance scores and rankings using statistical learning tools on single nucleotide polymorphisms (SNPs) and risk factors involved in gene-gene and gene-environment interaction. BMC Proceedings, 1(Suppl. 1), S58.
    • (2007) BMC Proceedings , vol.1 , Issue.SUPPL. 1
    • Nicodemus, K.K.1
  • 21
    • 33747841010 scopus 로고    scopus 로고
    • Pathway analysis using random forests classification and regression
    • Pang,H. et al. (2006) Pathway analysis using random forests classification and regression. Bioinformatics, 22, 2028-2036.
    • (2006) Bioinformatics , vol.22 , pp. 2028-2036
    • Pang, H.1
  • 22
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team , R Foundation for statistical computing, Vienna, Austria
    • R Development Core Team (2007) R: A Language and Environment for Statistical Computing. R Foundation for statistical computing, Vienna, Austria.
    • (2007) R: A Language and Environment for Statistical Computing
  • 23
    • 2942612346 scopus 로고    scopus 로고
    • A pilot study on the application of statistical classification procedures to molecular epidemiological data
    • Schwender,H. et al. (2004) A pilot study on the application of statistical classification procedures to molecular epidemiological data. Toxicol. Lett., 151, 291-299.
    • (2004) Toxicol. Lett , vol.151 , pp. 291-299
    • Schwender, H.1
  • 24
    • 0035071957 scopus 로고    scopus 로고
    • A new statistical method for haplotype reconstruction from population data
    • Stephens,M. et al. (2001) A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet., 68, 978-989.
    • (2001) Am. J. Hum. Genet , vol.68 , pp. 978-989
    • Stephens, M.1
  • 25
    • 0242691208 scopus 로고    scopus 로고
    • A comparison of Bayesian methods for haplotype reconstruction from population genotype data
    • Stephens,M. and Donnelly,P. (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet., 73, 1162-1169.
    • (2003) Am. J. Hum. Genet , vol.73 , pp. 1162-1169
    • Stephens, M.1    Donnelly, P.2
  • 26
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl,C. et al. (2007) Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1
  • 27
    • 48549095457 scopus 로고    scopus 로고
    • Conditional variable importance for random forests
    • Strobl,C. et al. (2008) Conditional variable importance for random forests. BMC Bioinformatics, 9, 307.
    • (2008) BMC Bioinformatics , vol.9 , pp. 307
    • Strobl, C.1
  • 28
    • 33846643930 scopus 로고    scopus 로고
    • Exploiting interactions among polymorphisms contributing to complex disease traits with boosted generative modeling
    • Wang,L.-Y. et al. (2006) Exploiting interactions among polymorphisms contributing to complex disease traits with boosted generative modeling. J. Comput. Biol., 13, 1673-1684.
    • (2006) J. Comput. Biol , vol.13 , pp. 1673-1684
    • Wang, L.-Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.