메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1-296

Computational ecology: Artificial neural networks and their applications

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION PROGRAMS; APPROXIMATION ALGORITHMS; DATA MINING; MATLAB; NEURAL NETWORKS; STUDENTS; TEACHING;

EID: 84967584876     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/7436     Document Type: Book
Times cited : (34)

References (301)
  • 2
    • 0035117652 scopus 로고    scopus 로고
    • White SM. Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data set
    • Abrahart RJ, White SM. Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data set. Physics and Chemistry of the Earth (B), 26(1): 19-24, 2001.
    • (2001) Physics and Chemistry of the Earth (B) , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1
  • 3
    • 27844550324 scopus 로고    scopus 로고
    • Prediction of sulphur removal with Acidithiobacillus sp. Using artificial neural networks
    • Acharya C, Mohanty S, Sukla LB et al.Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks. Ecological Modelling, 190: 223-230, 2006.
    • (2006) Ecological Modelling , vol.190 , pp. 223-230
    • Acharya, C.1    Mohanty, S.2    Sukla, L.B.3
  • 4
    • 32144432519 scopus 로고    scopus 로고
    • Regression and multilayer perceptronbased models to forecast hourly O3 and NO2 levels in the Bilbao area
    • Agirre-Basurko E, Ibarra-Berastegi G, Madariaga I. Regression and multilayer perceptronbased models to forecast hourly O3 and NO2 levels in the Bilbao area. Environmental Modelling & Software, 21(4): 430-446, 2006.
    • (2006) Environmental Modelling & Software , vol.21 , Issue.4 , pp. 430-446
    • Agirre-Basurko, E.1    Ibarra-Berastegi, G.2    Madariaga, I.3
  • 5
    • 0036329545 scopus 로고    scopus 로고
    • A regularized neural net approach for retrieval of atmospheric and surface temperature with the IASI instrument
    • Aires F et al.A regularized neural net approach for retrieval of atmospheric and surface temperature with the IASI instrument. Journal of Applied Meteorology, 41: 144-159, 2002.
    • (2002) Journal of Applied Meteorology , vol.41 , pp. 144-159
    • Aires, F.1
  • 6
    • 49649148257 scopus 로고
    • A theory of cerebellar function
    • Albus JS. A theory of cerebellar function. Mathematical Biosciences, 10: 25-61, 1971.
    • (1971) Mathematical Biosciences , vol.10 , pp. 25-61
    • Albus, J.S.1
  • 7
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data
    • Almasri MN, Kaluarachchi JJ. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. EnvironmentalModelling and Software, 20: 851-871, 2005.
    • (2005) Environmentalmodelling and Software , vol.20 , pp. 851-871
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 14
    • 84967645921 scopus 로고
    • Differential geometry in statistical inference
    • Amari S. Differential geometry in statistical inference. Proc. ISI, 46th Session of the ISI, 52(2): 321-338, 1987.
    • (1987) Proc. ISI, 46Th Session of the ISI , vol.52 , Issue.2 , pp. 321-338
    • Amari, S.1
  • 15
    • 0002975366 scopus 로고
    • Differential geometry of a parametric family of invertible linear systems-Rimannian metric, dual affine connections and divergence
    • Amari S. Differential geometry of a parametric family of invertible linear systems-Rimannian metric, dual affine connections and divergence. Mathematical Systems Theory, 20: 53-82, 1987.
    • (1987) Mathematical Systems Theory , vol.20 , pp. 53-82
    • Amari, S.1
  • 16
    • 0023548819 scopus 로고
    • On mathematical methods in the theory of neural networks
    • Amari S. On mathematical methods in the theory of neural networks. Proc. 1st IEEE ICNN, Vol. 3, pp. IU3-Ell10, 1987.
    • (1987) Proc. 1St IEEE ICNN , vol.3
    • Amari, S.1
  • 17
    • 0029587111 scopus 로고    scopus 로고
    • Information geometry of EM and EM algorithm for neural networks
    • Amari S. Information geometry of EM and EM algorithm for neural networks. Neural Networks, 8(9): 1379-1408.
    • Neural Networks , vol.8 , Issue.9 , pp. 1379-1408
    • Amari, S.1
  • 20
    • 0011283878 scopus 로고
    • A simple neural network generating an interactive memory
    • Anderson JA. A simple neural network generating an interactive memory. Mathematical Biosciences, 14: 197-220, 1972.
    • (1972) Mathematical Biosciences , vol.14 , pp. 197-220
    • Anderson, J.A.1
  • 22
    • 31644445009 scopus 로고    scopus 로고
    • Potential applications of population viability analysis to risk assessment for invasive species
    • Andersen MC. Potential applications of population viability analysis to risk assessment for invasive species. Human and Ecological Risk Assessment, 11: 1083-1095, 2005.
    • (2005) Human and Ecological Risk Assessment , vol.11 , pp. 1083-1095
    • Andersen, M.C.1
  • 23
    • 0344498343 scopus 로고
    • Vegetational diversity and arthropod population response
    • Andow DA. Vegetational diversity and arthropod population response. Annual Review of Entomology, 36: 561-586, 1991.
    • (1991) Annual Review of Entomology , vol.36 , pp. 561-586
    • Andow, D.A.1
  • 25
    • 16444381068 scopus 로고    scopus 로고
    • Novel strategies for assessing and managing the risks posed by invasive alien species to global crop production and biodiversity
    • Baker R, Cannon R, Bartlett P, Barker I. Novel strategies for assessing and managing the risks posed by invasive alien species to global crop production and biodiversity. Annals of Applied Biology, 146: 177-191, 2005.
    • (2005) Annals of Applied Biology , vol.146 , pp. 177-191
    • Baker, R.1    Cannon, R.2    Bartlett, P.3    Barker, I.4
  • 26
    • 0037107821 scopus 로고    scopus 로고
    • Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks
    • Ballester EB, Valls GCI, Carrasco-Rodriguez JL et al.Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecological Modelling, 156: 27-41, 2002.
    • (2002) Ecological Modelling , vol.156 , pp. 27-41
    • Ballester, E.B.1    Valls, G.2    Carrasco-Rodriguez, J.L.3
  • 27
    • 0001024110 scopus 로고
    • First and second order methods for learning between steepest descent and Newton’s method
    • Battiti R. First and second order methods for learning between steepest descent and Newton’s method. Neural Computation, 4: 141-166, 1992.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 29
    • 0004172716 scopus 로고    scopus 로고
    • 2nd Edition). Tsinghua University Press, Beijing, China
    • Bian ZQ, Zhang XG. Pattern Recognition(2nd Edition). Tsinghua University Press, Beijing, China, 2000.
    • (2000) Pattern Recognition
    • Bian, Z.Q.1    Zhang, X.G.2
  • 30
    • 0030616678 scopus 로고    scopus 로고
    • Upland plant community classification in Elk Island National Park, Alberta, Canada, using disturbance history and physical site factors
    • Bork EW, Hudson RJ, Bailey AW. Upland plant community classification in Elk Island National Park, Alberta, Canada, using disturbance history and physical site factors. Plant Ecology, 130: 171-190, 1997.
    • (1997) Plant Ecology , vol.130 , pp. 171-190
    • Bork, E.W.1    Hudson, R.J.2    Bailey, A.W.3
  • 31
    • 0037084856 scopus 로고    scopus 로고
    • Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri)
    • Bradshaw CJA, Davis LS, Purvis M et al.Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri). Ecological Modelling, 148: 111-131, 2002.
    • (2002) Ecological Modelling , vol.148 , pp. 111-131
    • Bradshaw, C.1    Davis, L.S.2    Purvis, M.3
  • 32
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures (with discussion)
    • Breiman L. Statistical modeling: The two cultures (with discussion). Statistical Science, 16: 199-231, 2001.
    • (2001) Statistical Science , vol.16 , pp. 199-231
    • Breiman, L.1
  • 33
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead DS, Lowe D. Multivariable functional interpolation and adaptive networks. Complex Systems, 2: 321-355, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 34
    • 0000297282 scopus 로고
    • Conservation of neotropical insects: Insects as indicators
    • Collins NM, Thomas JA (Eds.). Academic Press, London, England
    • Brown KS Jr. Conservation of neotropical insects: Insects as indicators. The Conservation of Insects and Their Habitats, Collins NM, Thomas JA (Eds.). Academic Press, London, England, 1991.
    • (1991) The Conservation of Insects and Their Habitats
    • Brown, K.S.1
  • 35
    • 21144477583 scopus 로고
    • Fitzpatrick M. Estimating the number of species: A review
    • Bunge J, Fitzpatrick M. Estimating the number of species: A review. Journal of American Statistician Association, 88: 364-373, 1993.
    • (1993) Journal of American Statistician Association , vol.88 , pp. 364-373
    • Bunge, J.1
  • 36
    • 84964989795 scopus 로고    scopus 로고
    • 7th Edition). Thomson Learning, Inc., NewYork, USA
    • Burden R, Faires JD. Numerical Analysis(7th Edition). Thomson Learning, Inc., NewYork, USA, 2001.
    • (2001) Numerical Analysis
    • Burden, R.1    Faires, J.D.2
  • 37
    • 0018069938 scopus 로고
    • Estimation of the size of a closed population when capture probabilities vary among animals
    • Burnham KP, Overton WS. Estimation of the size of a closed population when capture probabilities vary among animals. Biometrika, 65: 623-633, 1978.
    • (1978) Biometrika , vol.65 , pp. 623-633
    • Burnham, K.P.1    Overton, W.S.2
  • 38
    • 0001155567 scopus 로고
    • Robust estimation of population when capture probabilities vary among animals
    • Burnham KP, Overton WS. Robust estimation of population when capture probabilities vary among animals. Ecology, 60: 927-936, 1979.
    • (1979) Ecology , vol.60 , pp. 927-936
    • Burnham, K.P.1    Overton, W.S.2
  • 40
    • 0021776661 scopus 로고
    • Grossberg S.Amassive parallel architecture for a self-organing neural pattern recognition machine
    • Carpenter GA, Grossberg S.Amassive parallel architecture for a self-organing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37: 54-115, 1987.
    • (1987) Computer Vision, Graphics, and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1
  • 41
    • 84973857317 scopus 로고
    • ART2: Self-organzation of stable category recognition codes for analog input patterns
    • Carpenter GA, Grossberg S. ART2: Self-organzation of stable category recognition codes for analog input patterns. Applied Optics, 26(23): 4019-4930, 1987.
    • (1987) Applied Optics , vol.26 , Issue.23 , pp. 4019-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 42
    • 0025235219 scopus 로고
    • ART3: Hierachical search using chemical transmitters in selforganizing pattern recognition architectures
    • Carpenter GA, Grossberg S. ART3: Hierachical search using chemical transmitters in selforganizing pattern recognition architectures. Neural Networks, 3(23): 129-152, 1990.
    • (1990) Neural Networks , vol.3 , Issue.23 , pp. 129-152
    • Carpenter, G.A.1    Grossberg, S.2
  • 43
    • 0025889915 scopus 로고
    • ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network
    • Carpenter GA, Grossberg S, Reynolds J. ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks, 4(5): 169-181, 1991.
    • (1991) Neural Networks , vol.4 , Issue.5 , pp. 169-181
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.3
  • 44
    • 32144443435 scopus 로고    scopus 로고
    • Objective ozone forecasting in the South CoastAir Basin: Updating the objective prediction models for the late 1990s and southern California ozone study (SCOS97-NARSTO) application
    • American Meteorology Society, Boston, MA, USA
    • Cassmassi JC. Objective ozone forecasting in the South CoastAir Basin: Updating the objective prediction models for the late 1990s and southern California ozone study (SCOS97-NARSTO) application. Proceedings of the 12th Conference on Numerical Weather Prediction 54-58, American Meteorology Society, Boston, MA, USA, 1998.
    • (1998) Proceedings of the 12Th Conference on Numerical Weather Prediction 54-58
    • Cassmassi, J.C.1
  • 46
    • 0035673791 scopus 로고    scopus 로고
    • Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps
    • Cereghino R, Giraudel JL, Compin A. Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps. Ecological Modelling, 146: 167-180, 2001.
    • (2001) Ecological Modelling , vol.146 , pp. 167-180
    • Cereghino, R.1    Giraudel, J.L.2    Compin, A.3
  • 47
    • 0001463548 scopus 로고
    • Non-parametric estimation of the number of classes in a population
    • Chao A. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11: 265-270, 1984.
    • (1984) Scandinavian Journal of Statistics , vol.11 , pp. 265-270
    • Chao, A.1
  • 49
    • 0037369671 scopus 로고    scopus 로고
    • Effects of plant traits on ecosystem and regional processes:A conceptual framework for predicting the consequences of global change
    • Chapin FS. Effects of plant traits on ecosystem and regional processes:A conceptual framework for predicting the consequences of global change. Annals Botany, 91: 1-9, 2003.
    • (2003) Annals Botany , vol.91 , pp. 1-9
    • Chapin, F.S.1
  • 51
    • 0026882084 scopus 로고
    • Conjugate gradient algorithm for efficient training of artificial neural networks
    • Charalambous C. Conjugate gradient algorithm for efficient training of artificial neural networks. IEEE Proceedings G, 139(3): 301-310, 1992.
    • (1992) IEEE Proceedings G , vol.139 , Issue.3 , pp. 301-310
    • Charalambous, C.1
  • 56
    • 0032876594 scopus 로고    scopus 로고
    • Improved learning algorithms for mixture of experts in multiclass classification
    • Chen K, Xu L, Chi H. Improved learning algorithms for mixture of experts in multiclass classification. Neural Networks, 12(9): 1229-1252, 1999.
    • (1999) Neural Networks , vol.12 , Issue.9 , pp. 1229-1252
    • Chen, K.1    Xu, L.2    Chi, H.3
  • 57
    • 0026097068 scopus 로고
    • Constrained topological mapping for nonparametric regression analysis
    • Cherkassky V, Lari-Najafi H. Constrained topological mapping for nonparametric regression analysis. Neural Networks, 4: 27-40, 1991.
    • (1991) Neural Networks , vol.4 , pp. 27-40
    • Cherkassky, V.1    Lari-Najafi, H.2
  • 59
    • 84946643955 scopus 로고
    • Simplified estimators for the normal distribution when samples are singly censored sample
    • Cohen ACJ. Simplified estimators for the normal distribution when samples are singly censored sample. Technometrics, 1: 217-237, 1959.
    • (1959) Technometrics , vol.1 , pp. 217-237
    • Cohen, A.1
  • 60
    • 5244321664 scopus 로고
    • Tables for maximum likelihood estimates: Singly truncated and singly censored sample
    • Cohen ACJ. Tables for maximum likelihood estimates: Singly truncated and singly censored sample. Technometrics, 3: 535-541, 1961.
    • (1961) Technometrics , vol.3 , pp. 535-541
    • Cohen, A.1
  • 62
    • 0000686882 scopus 로고
    • Improving food webs
    • Cohen JE et al.Improving food webs. Ecology, 74: 252-258, 1993.
    • (1993) Ecology , vol.74 , pp. 252-258
    • Cohen, J.E.1
  • 63
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 18(20): 3746, 1960.
    • (1960) Educational and Psychological Measurement , vol.18 , Issue.20 , pp. 3746
    • Cohen, J.1
  • 64
    • 0020383310 scopus 로고
    • HsiehYH. Randomness, area, and species richness
    • Coleman BD, Mares MA, Willig MR, HsiehYH. Randomness, area, and species richness. Ecology, 63: 1121-1133, 1982.
    • (1982) Ecology , vol.63 , pp. 1121-1133
    • Coleman, B.D.1    Mares, M.A.2    Willig, M.R.3
  • 65
    • 84967428471 scopus 로고
    • Human aspects of biodiversity: An evolutionary perspective
    • Solbrig OT, van Emden HM, van Oordt PGWJ (Eds.). International Union of Biological Sciences, Monograph, IUBS Press, Paris, France
    • Cowell RK. Human aspects of biodiversity: An evolutionary perspective. Biological Diversity and Global Change, Solbrig OT, van Emden HM, van Oordt PGWJ (Eds.). International Union of Biological Sciences, Monograph No. 8. IUBS Press, Paris, France, 1992.
    • (1992) Biological Diversity and Global Change , vol.8
    • Cowell, R.K.1
  • 68
    • 18044384501 scopus 로고    scopus 로고
    • Thrips palmi Karny (Thysanoptera: Thripidae): Could it survive in New Zealand?
    • Dentener PR, Whiting DC, Connolly PG. Thrips palmi Karny (Thysanoptera: Thripidae): Could it survive in New Zealand? New Zealand Plant Protection, 55: 18-22, 2002.
    • (2002) New Zealand Plant Protection , vol.55 , pp. 18-22
    • Dentener, P.R.1    Whiting, D.C.2    Connolly, P.G.3
  • 69
    • 0003545325 scopus 로고
    • Science Press, Beijing, China
    • Department of Mathematics of Nanjing University. Ordinary Differential Equations. Science Press, Beijing, China, 1978.
    • (1978) Ordinary Differential Equations
  • 70
    • 0033578441 scopus 로고    scopus 로고
    • Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece)
    • Dimopoulos I, Chronopoulos J, Chronopoulou-Sereli A, Lek S. Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece). Ecological Modelling, 120: 157-165, 1999.
    • (1999) Ecological Modelling , vol.120 , pp. 157-165
    • Dimopoulos, I.1    Chronopoulos, J.2    Chronopoulou-Sereli, A.3    Lek, S.4
  • 71
    • 27844433539 scopus 로고    scopus 로고
    • Relationship between plant community and insect community in Korean pine broad-leaved mixed forest of Changbai Mountain
    • Dong BL, Ji LZ, Wei CY et al. Relationship between plant community and insect community in Korean pine broad-leaved mixed forest of Changbai Mountain. Chinese Journal of Ecology, 24(9): 1013-1016, 2005.
    • (2005) Chinese Journal of Ecology , vol.24 , Issue.9 , pp. 1013-1016
    • Dong, B.L.1    Ji, L.Z.2    Wei, C.Y.3
  • 72
    • 0001074307 scopus 로고
    • The expectation of plant records from prescribed areas
    • Dony JG. The expectation of plant records from prescribed areas. Watsonia, 5: 377-385, 1963.
    • (1963) Watsonia , vol.5 , pp. 377-385
    • Dony, J.G.1
  • 73
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife, and cross-validation
    • Efron B, Gong G.A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37: 36-48, 1983.
    • (1983) The American Statistician , vol.37 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 74
    • 20044370100 scopus 로고    scopus 로고
    • Investigating the relationships between the distribution of British ground beetle species (Coleoptera, Carabidae) and temperature, precipitation and altitude
    • Eyre MD, Rushton SP, Luff ML, Telfer MG. Investigating the relationships between the distribution of British ground beetle species (Coleoptera, Carabidae) and temperature, precipitation and altitude. Journal of Biogeography, 32: 973-983, 2005.
    • (2005) Journal of Biogeography , vol.32 , pp. 973-983
    • Eyre, M.D.1    Rushton, S.P.2    Luff, M.L.3    Telfer, M.G.4
  • 76
    • 32244435216 scopus 로고    scopus 로고
    • Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
    • Filippi AM, Jensen JR. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment, 100: 512-530, 2006.
    • (2006) Remote Sensing of Environment , vol.100 , pp. 512-530
    • Filippi, A.M.1    Jensen, J.R.2
  • 77
    • 0012320945 scopus 로고    scopus 로고
    • Statistical evaluation of neural network experiments: Minimum requirements and current practice
    • Trappl R (Ed.), Austrian Society for Cybernetic Studies
    • Flexer A. Statistical evaluation of neural network experiments: Minimum requirements and current practice. Cybernetics and Systems’96 Proceedings of the 13th European Meeting on Cybernetics and Systems Research, Trappl R (Ed.). 1005-1008, Austrian Society for Cybernetic Studies, 1996.
    • (1996) Cybernetics and Systems’96 Proceedings of the 13Th European Meeting on Cybernetics and Systems Research , pp. 1005-1008
    • Flexer, A.1
  • 78
    • 0000783575 scopus 로고
    • The upstart algorithm:A method for constructing and training feed forward neural networks
    • Frean M. The upstart algorithm:A method for constructing and training feed forward neural networks. Neural Computation, 2(2): 198-209, 1990.
    • (1990) Neural Computation , vol.2 , Issue.2 , pp. 198-209
    • Frean, M.1
  • 79
    • 84967360956 scopus 로고    scopus 로고
    • A new method for training MLP neural networks
    • Gao XR, Yang FS. A new method for training MLP neural networks. Chinese Journal of Computers, 19(6): 687-694, 1996.
    • (1996) Chinese Journal of Computers , vol.19 , Issue.6 , pp. 687-694
    • Gao, X.R.1    Yang, F.S.2
  • 80
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (The multiplayer perceptron)—areview of applications in the atmospheric sciences
    • Gardner MW, Dorling SR. Artificial neural networks (the multiplayer perceptron)—areview of applications in the atmospheric sciences. Atmospheric Environment, 32: 2627-2636, 1998.
    • (1998) Atmospheric Environment , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 81
    • 0033081112 scopus 로고    scopus 로고
    • Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London
    • Gardner MW, Dorling SR. Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33(5): 709-719, 1999.
    • (1999) Atmospheric Environment , vol.33 , Issue.5 , pp. 709-719
    • Gardner, M.W.1    Dorling, S.R.2
  • 82
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: An improved methodology to account for non-linear behaviour
    • Gardner MW, Dorling SR. Statistical surface ozone models: An improved methodology to account for non-linear behaviour. Atmospheric Environment, 34(1): 21-34, 2000.
    • (2000) Atmospheric Environment , vol.34 , Issue.1 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 84
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160: 249-264, 2003.
    • (2003) Ecological Modelling , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 85
    • 33646491431 scopus 로고    scopus 로고
    • Two-way interaction of input variables in the sensitivity analysis of neural network models
    • Gevrey M, Dimopoulos I, Lek S. Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecological Modelling, 195: 43-50, 2006.
    • (2006) Ecological Modelling , vol.195 , pp. 43-50
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 87
    • 0032425501 scopus 로고    scopus 로고
    • Benefits of plant diversity to ecosystems: Immediate, filter and founder effects
    • Grime JP. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86: 902-910, 1998.
    • (1998) Journal of Ecology , vol.86 , pp. 902-910
    • Grime, J.P.1
  • 88
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors
    • Grossberg S. Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological Cybernetics, 23: 121-134, 1976.
    • (1976) Biological Cybernetics , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 89
    • 84967485903 scopus 로고
    • The brain build a cognitive code?
    • Grossberg S. Howdoes the brain build a cognitive code? Psychological Review, 88: 375-407, 1980.
    • (1980) Psychological Review , vol.88 , pp. 375-407
    • Howdoes, G.S.1
  • 90
    • 0030195241 scopus 로고    scopus 로고
    • Towards more practical average bounds on supervised learning
    • Gu HZ, Takahashi H. Towards more practical average bounds on supervised learning. IEEE Transactions on Neural Networks, 7(44): 953-968, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.44 , pp. 953-968
    • Gu, H.Z.1    Takahashi, H.2
  • 91
    • 0037202446 scopus 로고    scopus 로고
    • Generalized linear and generalized additive models in studies of species distributions: Setting the scene
    • Guisan A, Edwards TC, Hastie T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling, 157: 89-100, 2002.
    • (2002) Ecological Modelling , vol.157 , pp. 89-100
    • Guisan, A.1    Edwards, T.C.2    Hastie, T.3
  • 93
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan MT, Menhaj M. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6): 989-993, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 97
    • 0033178306 scopus 로고    scopus 로고
    • Precision, and accuracy of foue measures of species richness
    • Hellmann JJ, Fowler GW. Bias, precision, and accuracy of foue measures of species richness. Ecological Applications, 3: 824-834, 1999.
    • (1999) Ecological Applications , vol.3 , pp. 824-834
    • Hellmann, J.J.1    Bias, F.G.2
  • 98
    • 0020975097 scopus 로고
    • Estimating species richness using the jackknife procedure
    • Heltshe JF, Forester NE. Estimating species richness using the jackknife procedure. Biometrics, 39: 1-11, 1983.
    • (1983) Biometrics , vol.39 , pp. 1-11
    • Heltshe, J.F.1    Forester, N.E.2
  • 101
    • 84967646935 scopus 로고
    • HMM/NN training techniques for connected alphadigit speech recognition
    • Toronto, Canada
    • Hochberg MM et al.HMM/NN training techniques for connected alphadigit speech recognition. Proc. IEEE ICASSP’91, Toronto, Canada, 109-112, 1991.
    • (1991) Proc. IEEE ICASSP’91 , pp. 109-112
    • Hochberg, M.M.1
  • 103
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA, 79: 2554-2558, 1982.
    • (1982) Proceedings of the National Academy of Sciences USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 104
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield JJ. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences USA, 81: 3088-3092, 1984.
    • (1984) Proceedings of the National Academy of Sciences USA , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 105
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield JJ, Tank DW. Neural computation of decisions in optimization problems. Biological Cybernetics, 52: 141-154, 1985.
    • (1985) Biological Cybernetics , vol.52 , pp. 141-154
    • Hopfield, J.J.1    Tank, D.W.2
  • 106
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik KM, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5): 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.M.1    Stinchcombe, M.2    White, H.3
  • 107
    • 0027073341 scopus 로고
    • Time series analysis of the interdependences among air pollutant
    • Hsu KJ. Time series analysis of the interdependences among air pollutant. Atmospheric Environment, 26(4): 491-503, 1992.
    • (1992) Atmospheric Environment , vol.26 , Issue.4 , pp. 491-503
    • Hsu, K.J.1
  • 109
    • 0000752502 scopus 로고
    • The concept of species diversity: A critique and alternative parameters
    • Hurlbert SH. The concept of species diversity: A critique and alternative parameters. Ecology, 52: 577-585, 1971.
    • (1971) Ecology , vol.52 , pp. 577-585
    • Hurlbert, S.H.1
  • 110
    • 44049112575 scopus 로고    scopus 로고
    • Generic algorithms and very fast simulated reannealing:A comparison
    • Ingber L, Rosen B. Generic algorithms and very fast simulated reannealing:A comparison. Ecology, 16: 87-100.
    • Ecology , vol.16 , pp. 87-100
    • Ingber, L.1    Rosen, B.2
  • 111
    • 43949164756 scopus 로고
    • Simulated annealing: Practice versus theory
    • Ingber L. Simulated annealing: Practice versus theory. Mathematical Computer and Modelling, 18: 29-57, 1993.
    • (1993) Mathematical Computer and Modelling , vol.18 , pp. 29-57
    • Ingber, L.1
  • 112
    • 36148989529 scopus 로고    scopus 로고
    • Deviate AB. Macro-invertebrates in a dynamic river environment: Analysis of time series from artificial substrates, using a ‘white box’ neural network modelling method
    • Jaarsma NG, Bergman M, Schulze FH, deviate AB. Macro-invertebrates in a dynamic river environment: Analysis of time series from artificial substrates, using a ‘white box’ neural network modelling method. Aquatic Ecology, 41(3): 413-425, 2007.
    • (2007) Aquatic Ecology , vol.41 , Issue.3 , pp. 413-425
    • Jaarsma, N.G.1    Bergman, M.2    Schulze, F.H.3
  • 113
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs RA. Increased rates of convergence through learning rate adaptation. Neural Networks, 1(4): 295-308, 1988.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-308
    • Jacobs, R.A.1
  • 115
    • 0036033936 scopus 로고    scopus 로고
    • A state-transition approach to understanding nonequilibrium plant community dynamics in Californian grasslands
    • Jackson RD, Bartolome JW. A state-transition approach to understanding nonequilibrium plant community dynamics in Californian grasslands. Plant Ecology, 162: 49-65, 2002.
    • (2002) Plant Ecology , vol.162 , pp. 49-65
    • Jackson, R.D.1    Bartolome, J.W.2
  • 116
    • 26944467119 scopus 로고    scopus 로고
    • The creation of alternative stable states in the sourthern boreal forest, Québec, Canada
    • Jasinski JP, Payette S. The creation of alternative stable states in the sourthern boreal forest, Québec, Canada. Ecological Monographs, 75: 561-583, 2005.
    • (2005) Ecological Monographs , vol.75 , pp. 561-583
    • Jasinski, J.P.1    Payette, S.2
  • 117
    • 72349083634 scopus 로고    scopus 로고
    • Effects of forest plant communities on forest insect communities
    • Jia CS, Chi DF, Hu YY. Effects of forest plant communities on forest insect communities. Journal of Anhui Agricultural Science, 34(9): 1871-1872, 2006.
    • (2006) Journal of Anhui Agricultural Science , vol.34 , Issue.9 , pp. 1871-1872
    • Jia, C.S.1    Chi, D.F.2    Hu, Y.Y.3
  • 119
    • 17144471031 scopus 로고    scopus 로고
    • Explanation of the observed structure of functional feeding groups of aquatic macro-invertebrates by an ecological model and the maximum exergy principle
    • Jorgensen SE, Verdonschot P, Lek S. Explanation of the observed structure of functional feeding groups of aquatic macro-invertebrates by an ecological model and the maximum exergy principle. Ecological Modelling, 158: 223-231, 2002.
    • (2002) Ecological Modelling , vol.158 , pp. 223-231
    • Jorgensen, S.E.1    Verdonschot, P.2    Lek, S.3
  • 120
    • 0031788306 scopus 로고    scopus 로고
    • DjebbarY. Modeling nitrate leaching using neural networks
    • Kaluli JW, Madramootoo CA, DjebbarY. Modeling nitrate leaching using neural networks. Water Science and Technology, 38(7): 127-134, 1998.
    • (1998) Water Science and Technology , vol.38 , Issue.7 , pp. 127-134
    • Kaluli, J.W.1    Madramootoo, C.A.2
  • 121
    • 34247525561 scopus 로고    scopus 로고
    • An approach for determining relative input parameter importance and significance in artificial neural networks
    • Kemp SJ, Zaradic P, Hansen F.An approach for determining relative input parameter importance and significance in artificial neural networks. Ecological Modelling, 204: 326-334, 2007.
    • (2007) Ecological Modelling , vol.204 , pp. 326-334
    • Kemp, S.J.1    Zaradic, P.2    Hansen, F.3
  • 122
    • 33846653402 scopus 로고    scopus 로고
    • An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs
    • Kilic H, Soyupak S, Tuzun I et al.An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs. Ecological Modelling, 201: 359-368, 2007.
    • (2007) Ecological Modelling , vol.201 , pp. 359-368
    • Kilic, H.1    Soyupak, S.2    Tuzun, I.3
  • 124
    • 0020068152 scopus 로고
    • Self-organizing formation of topologically correct feature maps
    • Kohonen T. Self-organizing formation of topologically correct feature maps. Biological Cybernatics, 43: 59-69, 1982.
    • (1982) Biological Cybernatics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 126
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Proceedings of the IEEE, 78(9): 1464-1480, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 127
    • 0003410791 scopus 로고
    • Springer-Verlag, Heidelberg, Germany
    • Kohonen T. Self-Organizing Maps. Springer-Verlag, Heidelberg, Germany, 1995.
    • (1995) Self-Organizing Maps
    • Kohonen, T.1
  • 128
    • 0344972931 scopus 로고    scopus 로고
    • Self-organizing maps of symbol strings
    • Kohonen T, Somervuo P. Self-organizing maps of symbol strings. Neurocomputing, 21: 19-30, 1998.
    • (1998) Neurocomputing , vol.21 , pp. 19-30
    • Kohonen, T.1    Somervuo, P.2
  • 130
    • 0027331698 scopus 로고
    • Invertebrate assemblges: Their use as indicators in conservation planning
    • Kremen C, Colwell RK, Erwin TL, Murphy DD. Invertebrate assemblges: Their use as indicators in conservation planning. Conservation Biology, 7: 796-808, 1993.
    • (1993) Conservation Biology , vol.7 , pp. 796-808
    • Kremen, C.1    Colwell, R.K.2    Erwin, T.L.3    Murphy, D.D.4
  • 131
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • Kuo JT, Hsieh MH, Lung WS et al.Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling, 200: 171-177, 2007.
    • (2007) Ecological Modelling , vol.200 , pp. 171-177
    • Kuo, J.T.1    Hsieh, M.H.2    Lung, W.S.3
  • 132
    • 25444482033 scopus 로고
    • Rao CR (Ed.), Elsevier Science Publisher, The Netherlands
    • Laird N. The EM algorithm. Handbook of Statistics Vol 9, Rao CR (Ed.). 509-520, Elsevier Science Publisher, The Netherlands, 1993.
    • (1993) The EM Algorithm. Handbook of Statistics , vol.9 , pp. 509-520
    • Laird, N.1
  • 133
    • 33845981046 scopus 로고    scopus 로고
    • Stratospheric ozone, ultraviolet radiation, and cryptogams
    • Lars OB. Stratospheric ozone, ultraviolet radiation, and cryptogams. Biological Conservation, 135(3): 326-333, 2007.
    • (2007) Biological Conservation , vol.135 , Issue.3 , pp. 326-333
    • Lars, O.B.1
  • 134
    • 0036791340 scopus 로고    scopus 로고
    • Predicting the effects of environmental change on plant community composition and ecosystem functioning: Revising the Holy Grail
    • Lavorel S, Garnier E. Predicting the effects of environmental change on plant community composition and ecosystem functioning: Revising the Holy Grail. Functional Ecology, 16: 545-556, 2002.
    • (2002) Functional Ecology , vol.16 , pp. 545-556
    • Lavorel, S.1    Garnier, E.2
  • 135
    • 0000134812 scopus 로고
    • Une procedure d’apprentissage pour reseau a seuil assymetrique
    • LeCun Y. Une procedure d’apprentissage pour reseau a seuil assymetrique. Cognitiva, 85: 599-604, 1985.
    • (1985) Cognitiva , vol.85 , pp. 599-604
    • Lecun, Y.1
  • 137
    • 0037202453 scopus 로고    scopus 로고
    • GRASP: Generalized regression analysis and spatial prediction
    • Lehmann A, Overton J, Leathwick JJ. GRASP: Generalized regression analysis and spatial prediction. Ecological Modelling, 157: 189-207, 2002.
    • (2002) Ecological Modelling , vol.157 , pp. 189-207
    • Lehmann, A.1    Overton, J.2    Leathwick, J.J.3
  • 138
    • 0042728108 scopus 로고    scopus 로고
    • Estimations of trout density and biomass: A neural networks approach
    • Lek S, Baran P. Estimations of trout density and biomass: A neural networks approach. Nonlinear Analysis, Theory, Methods & Applications, 30(8): 4985-4990, 1997.
    • (1997) Nonlinear Analysis, Theory, Methods & Applications , vol.30 , Issue.8 , pp. 4985-4990
    • Lek, S.1    Baran, P.2
  • 139
  • 140
    • 0009268083 scopus 로고    scopus 로고
    • Fourth Edition, Tsinghua University Press, Springer, Beijing, China
    • Li QY, Wang NC, Yi DY. Numerical Analysis(Fourth Edition). Tsinghua University Press, Springer, Beijing, China, 2001.
    • (2001) Numerical Analysis
    • Li, Q.Y.1    Wang, N.C.2    Yi, D.Y.3
  • 141
    • 0031268844 scopus 로고    scopus 로고
    • Multiresolution learning paradigm and signal prediction
    • Liang Y, Page EW. Multiresolution learning paradigm and signal prediction. IEEE Transactions on Signal processing, 45: 2858-2864, 1997.
    • (1997) IEEE Transactions on Signal Processing , vol.45 , pp. 2858-2864
    • Liang, Y.1    Page, E.W.2
  • 143
  • 144
    • 0037107822 scopus 로고    scopus 로고
    • A non-destructive morphometric technique to predict Ligula intestinalis L. Plerocercoid load in roach (Rutilus rutilus L.) abdominal cavity
    • Loot G, Giraudel JL, Lek S. A non-destructive morphometric technique to predict Ligula intestinalis L. plerocercoid load in roach (Rutilus rutilus L.) abdominal cavity. Ecological Modelling, 156: 1-11, 2002.
    • (2002) Ecological Modelling , vol.156 , pp. 1-11
    • Loot, G.1    Giraudel, J.L.2    Lek, S.3
  • 146
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackey DJC. Bayesian interpolation. Neural Computation, 4: 415-447, 1992.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • Mackey, D.1
  • 147
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behaviour and optimising the performance of back-propagation neural networks:An empirical study
    • Maier HR, Dandy GC. Understanding the behaviour and optimising the performance of back-propagation neural networks:An empirical study. Environmental Modelling & Software, 13(2): 179-191, 1998.
    • (1998) Environmental Modelling & Software , vol.13 , Issue.2 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 149
    • 0038792227 scopus 로고    scopus 로고
    • Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks
    • Maravelias CD, Haralabous J, Papaconstantinou C. Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Marine Ecology-Progress Series, 255: 249-258, 2003.
    • (2003) Marine Ecology-Progress Series , vol.255 , pp. 249-258
    • Maravelias, C.D.1    Haralabous, J.2    Papaconstantinou, C.3
  • 150
    • 84956226983 scopus 로고
    • A convergence theorem for sequential learning in twolayer perceptrons
    • Marchand M, Golea M, Ruján P. A convergence theorem for sequential learning in twolayer perceptrons. Europhysics Letters, 11(65): 487-492, 1990.
    • (1990) Europhysics Letters , vol.11 , Issue.65 , pp. 487-492
    • Marchand, M.1    Golea, M.2    Ruján, P.3
  • 151
    • 0037380774 scopus 로고    scopus 로고
    • Comparison of a Bayesian classifier with a multilayer feedforward neural network using the example of plant/weed/soil discrimination
    • Marchant JA, Onyango CM. Comparison of a Bayesian classifier with a multilayer feedforward neural network using the example of plant/weed/soil discrimination. Computers and Electronics in Agriculture, 39: 3-22, 2003.
    • (2003) Computers and Electronics in Agriculture , vol.39 , pp. 3-22
    • Marchant, J.A.1    Onyango, C.M.2
  • 153
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5: 115-133, 1943.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 154
    • 0018468345 scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • McKay et al. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21: 239-245, 1979.
    • (1979) Technometrics , vol.21 , pp. 239-245
    • McKay1
  • 155
    • 13844306875 scopus 로고    scopus 로고
    • Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin
    • McKenna JE. Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin. Transactions of The American Fisheries Society, 134(1): 28-43, 2005.
    • (2005) Transactions of the American Fisheries Society , vol.134 , Issue.1 , pp. 28-43
    • McKenna, J.E.1
  • 158
    • 36149031331 scopus 로고
    • Learning in feedforward layered network: The tiling algorithm
    • Mezard M, Nadal JP. Learning in feedforward layered network: The tiling algorithm. Journal of Physics A, 22: 2191-2204, 1989.
    • (1989) Journal of Physics A , vol.22 , pp. 2191-2204
    • Mezard, M.1    Nadal, J.P.2
  • 159
    • 0024898808 scopus 로고
    • Documenting completeness, species-area relations, and the speciesabundance distribution of a regional flora
    • Miller RJ, Wiegert RG. Documenting completeness, species-area relations, and the speciesabundance distribution of a regional flora. Ecology, 70: 16-22, 1989.
    • (1989) Ecology , vol.70 , pp. 16-22
    • Miller, R.J.1    Wiegert, R.G.2
  • 160
    • 0041667004 scopus 로고
    • Condiderations for preserve design based on the distribution of rare plants in Great Smoky Mountains National Park. U.S.A
    • Miller RJ, White PS. Condiderations for preserve design based on the distribution of rare plants in Great Smoky Mountains National Park. U.S.A. Journal of Environmental Management, 10: 119-124, 1986.
    • (1986) Journal of Environmental Management , vol.10 , pp. 119-124
    • Miller, R.J.1    White, P.S.2
  • 162
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predicting forest characteristics
    • Moisen GG, Frescino TS. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157: 209-225, 2002.
    • (2002) Ecological Modelling , vol.157 , pp. 209-225
    • Moisen, G.G.1    Frescino, T.S.2
  • 163
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6: 525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 165
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody JE, Darken CJ. Fast learning in networks of locally-tuned processing units. Neural Computation, 1: 281-294, 1989.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.E.1    Darken, C.J.2
  • 166
    • 0037767107 scopus 로고    scopus 로고
    • Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR
    • Moreau S, Bosseno R, Gu X., Baret F. Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sensing of Environment, 85: 516-529, 2003.
    • (2003) Remote Sensing of Environment , vol.85 , pp. 516-529
    • Moreau, S.1    Bosseno, R.2    Gu, X.3    Baret, F.4
  • 167
    • 0034014053 scopus 로고    scopus 로고
    • Assessing the completeness of bat biodiversity inventories using species accumulation curves
    • Moreno CE, Halffter G. Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology, 37: 149-158, 2000.
    • (2000) Journal of Applied Ecology , vol.37 , pp. 149-158
    • Moreno, C.E.1    Halffter, G.2
  • 168
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra SMS, Khare M. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecological Modelling, 190: 99-115, 2006.
    • (2006) Ecological Modelling , vol.190 , pp. 99-115
    • Nagendra, S.1    Khare, M.2
  • 169
    • 0031140389 scopus 로고    scopus 로고
    • Adaptive control of nonlinear multivariable systems using neural networks
    • Narendra KS, Mukhopadhyay S. Adaptive control of nonlinear multivariable systems using neural networks. IEEE Transactions on Neural Networks, 8(3): 475-485, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 475-485
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 170
    • 0028137961 scopus 로고
    • Adaptive control of nonlinear multivariable systems using neural networks
    • Narendra KS, Mukhopadhyay S. Adaptive control of nonlinear multivariable systems using neural networks. Neural Networks, 7(5): 737-752, 1994.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 737-752
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 171
    • 84967509604 scopus 로고    scopus 로고
    • NeuralWare Inc., Pittsburgh, USA
    • NeuralWare. Neural Computing. NeuralWare Inc., Pittsburgh, USA, 2000.
    • (2000) Neural Computing
  • 172
    • 28444499275 scopus 로고    scopus 로고
    • The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands
    • Nour MH, Smith DW, El-Din MG et al.The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands. Ecological Modelling, 191: 19-32, 2006.
    • (2006) Ecological Modelling , vol.191 , pp. 19-32
    • Nour, M.H.1    Smith, D.W.2    El-Din, M.G.3
  • 173
    • 0034290473 scopus 로고    scopus 로고
    • An artificial neural network approach for studying phytoplankton succession
    • Olden JD. An artificial neural network approach for studying phytoplankton succession. Hydrobiology, 436: 131-143, 2000.
    • (2000) Hydrobiology , vol.436 , pp. 131-143
    • Olden, J.D.1
  • 174
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the “black box”:A randomization approach for understanding variable contributions in artificial neural networks
    • Olden JD, Jackson DA. Illuminating the “black box”:A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154: 135-150, 2002.
    • (2002) Ecological Modelling , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 175
    • 33747102371 scopus 로고    scopus 로고
    • Rediscovering the species in community-wide predictive modeling
    • Olden JD, Joy MK, Death RG. Rediscovering the species in community-wide predictive modeling. Ecological Applications, 16(4): 1449-1460, 2006.
    • (2006) Ecological Applications , vol.16 , Issue.4 , pp. 1449-1460
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 176
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden JD, Joy MK, Death RG. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178: 389-397, 2004.
    • (2004) Ecological Modelling , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 177
    • 0033105068 scopus 로고    scopus 로고
    • An artificial neural network approach to spatial habitat modeling with interspecific interaction
    • Özesmi SL, Özesmi U. An artificial neural network approach to spatial habitat modeling with interspecific interaction. Ecological Modelling, 116: 15-31, 1999.
    • (1999) Ecological Modelling , vol.116 , pp. 15-31
    • Özesmi, S.L.1    Özesmi, U.2
  • 178
    • 33646128233 scopus 로고    scopus 로고
    • Methodological issues in building, training, and testing artificial neural networks in ecological applications
    • Özesmi SL, Tan CO, Özesmi U. Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecological Modelling, 195: 83-93, 2006.
    • (2006) Ecological Modelling , vol.195 , pp. 83-93
    • Özesmi, S.L.1    Tan, C.O.2    Özesmi, U.3
  • 179
    • 0027634778 scopus 로고
    • Generalized clustering networks and Kohonen’s selforganizing scheme
    • Pal NR, Bezdek JC, Tsao ECK. Generalized clustering networks and Kohonen’s selforganizing scheme. IEEE Transcations on Neural Networks, 4: 549-557, 1993.
    • (1993) IEEE Transcations on Neural Networks , vol.4 , pp. 549-557
    • Pal, N.R.1    Bezdek, J.C.2    Tsao, E.3
  • 180
    • 0000658648 scopus 로고
    • The estimation of species richness by extrapolation
    • Palmer MW. The estimation of species richness by extrapolation. Ecology, 71: 1195-1198, 1990.
    • (1990) Ecology , vol.71 , pp. 1195-1198
    • Palmer, M.W.1
  • 181
    • 0001623021 scopus 로고
    • Estimating species richness: The second-order jackknife reconsidered
    • Palmer MW. Estimating species richness: The second-order jackknife reconsidered. Ecology, 72: 1512-1513, 1991.
    • (1991) Ecology , vol.72 , pp. 1512-1513
    • Palmer, M.W.1
  • 182
    • 0003049327 scopus 로고
    • Neural-net computing and intelligent control systems
    • Pao YH et al. Neural-net computing and intelligent control systems. International Journal of Control, 56: 263-289, 1992.
    • (1992) International Journal of Control , vol.56 , pp. 263-289
    • Pao, Y.H.1
  • 183
    • 0000106040 scopus 로고
    • Universal approximations using RBF networks
    • Park J et al.Universal approximations using RBF networks. Neural Computation, 3: 246-257, 1991.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1
  • 184
    • 0346735385 scopus 로고    scopus 로고
    • Conservation strategies for endemic fish species threatened by the Three Gorges Dam
    • Park YS, Chang JB, Lek S, Cao WX, Brosse S. Conservation strategies for endemic fish species threatened by the Three Gorges Dam. Conservation Biology, 17: 1748-1758, 2003.
    • (2003) Conservation Biology , vol.17 , pp. 1748-1758
    • Park, Y.S.1    Chang, J.B.2    Lek, S.3    Cao, W.X.4    Brosse, S.5
  • 185
    • 0004225001 scopus 로고
    • Learning-logic
    • Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT, Cambridge, USA
    • Parker DB. Learning-logic: Casting the cortex of the human brain in silicon.Technical Report TR-47, Center for Computational Research in Economics and Management Science, MIT, Cambridge, USA, 1985.
    • (1985) Casting the Cortex of the Human Brain in Silicon
    • Parker, D.B.1
  • 186
    • 0031591149 scopus 로고    scopus 로고
    • Prediction of functional characteristics of ecosystems:Acomparison of artificial neural networks and regression models
    • Paruelo JM, Tomasel F. Prediction of functional characteristics of ecosystems:Acomparison of artificial neural networks and regression models. Ecological Modelling, 98: 173-186, 1997.
    • (1997) Ecological Modelling , vol.98 , pp. 173-186
    • Paruelo, J.M.1    Tomasel, F.2
  • 188
    • 11444255160 scopus 로고    scopus 로고
    • Mart
    • Pastor-Barcenas O, Soria-Olivas E, Martın-Guerrero JD. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling. Ecological Modelling, 182: 149-158, 2005.
    • (2005) Ecological Modelling , vol.182 , pp. 149-158
    • Pastor-Barcenas, O.1    Soria-Olivas, E.2
  • 189
    • 0036721959 scopus 로고    scopus 로고
    • SPECIES:A spatial evaluation of climate impact on the envelope of species
    • Pearson RG, Dawson TP, Berry PM et al.SPECIES:A spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154(3): 289-300, 2002.
    • (2002) Ecological Modelling , vol.154 , Issue.3 , pp. 289-300
    • Pearson, R.G.1    Dawson, T.P.2    Berry, P.M.3
  • 190
    • 33750220324 scopus 로고    scopus 로고
    • Climate variables and their role in site discrimination of invasive insect species distributions
    • Peacock L, Worner SP, Sedcole R. Climate variables and their role in site discrimination of invasive insect species distributions. Environmental Entomology, 35(4): 958-963, 2006.
    • (2006) Environmental Entomology , vol.35 , Issue.4 , pp. 958-963
    • Peacock, L.1    Worner, S.P.2    Sedcole, R.3
  • 191
    • 0001406440 scopus 로고
    • Amean field theory learning algorithm for NN
    • Perterson C, Anderson JR. Amean field theory learning algorithm for NN. Complex Systems, 1(5): 995-1019, 1987.
    • (1987) Complex Systems , vol.1 , Issue.5 , pp. 995-1019
    • Perterson, C.1    Erson, J.R.2
  • 192
    • 0038949471 scopus 로고
    • Studies in applied ecology I: A statistical analysis of regeneration following protection from grazing
    • Pidgeon IM, Ashby E. Studies in applied ecology I: A statistical analysis of regeneration following protection from grazing. Proceedings of the Linneon Society New SouthWales, 65: 123-143, 1940.
    • (1940) Proceedings of the Linneon Society New Southwales , vol.65 , pp. 123-143
    • Pidgeon, I.M.1    Ashby, E.2
  • 193
    • 0001283724 scopus 로고
    • Conserving biological diversity in agricultural/forestry systems
    • Pimental D, Stachow U, Takacs DA, Brubaker HW. Conserving biological diversity in agricultural/forestry systems. Bioscience, 42(5): 354-362, 1992.
    • (1992) Bioscience , vol.42 , Issue.5 , pp. 354-362
    • Pimental, D.1    Stachow, U.2    Takacs, D.A.3    Brubaker, H.W.4
  • 194
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F. Networks for approximation and learning. Proceedings of IEEE, 78(9): 1481-1496, 1990.
    • (1990) Proceedings of IEEE , vol.78 , Issue.9 , pp. 1481-1496
    • Poggio, T.1    Girosi, F.2
  • 196
    • 0030130727 scopus 로고    scopus 로고
    • Quantitative study of experimental evaluations of neural network learning algorithms: Current research practice
    • Prechelt L. A quantitative study of experimental evaluations of neural network learning algorithms: Current research practice. Neural Networks, 9(3): 457-462, 1996.
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 457-462
    • Prechelt, L.A.1
  • 197
    • 0001103435 scopus 로고
    • Time and space and the variation of species
    • Preston FW. Time and space and the variation of species. Ecology, 41: 785-790, 1960.
    • (1960) Ecology , vol.41 , pp. 785-790
    • Preston, F.W.1
  • 199
    • 34247126401 scopus 로고    scopus 로고
    • Plant traits in a state and transition framework as markers of ecosystem response to land-use change
    • Quétier F, Thébault A, Lavorel S. Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs, 77(1): 33-52, 2007.
    • (2007) Ecological Monographs , vol.77 , Issue.1 , pp. 33-52
    • Quétier, F.1    Thébault, A.2    Lavorel, S.3
  • 200
    • 0024610919 scopus 로고
    • A tutorial on HMM and selected applications in speech recognition
    • Rabiner LR. A tutorial on HMM and selected applications in speech recognition. Proc. IEEE, 77: 257-286, 1989.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 201
    • 34548561521 scopus 로고    scopus 로고
    • PaleoNet: New software for building, evaluating and applying neural network based transfer functions in paleoecology
    • Racca JMJ, Racca R, Pienitz R, Prairie YT. PaleoNet: New software for building, evaluating and applying neural network based transfer functions in paleoecology. Journal of Paleolimnology, 38(3): 467-472, 2007.
    • (2007) Journal of Paleolimnology , vol.38 , Issue.3 , pp. 467-472
    • Racca, J.1    Racca, R.2    Pienitz, R.3    Prairie, Y.T.4
  • 202
    • 0034174354 scopus 로고    scopus 로고
    • Neural networks for agrichemical vulnerability assessment of rural private wells
    • Ray C, Klindworth K. Neural networks for agrichemical vulnerability assessment of rural private wells. Journal of Hydrologic Engineering, 5(2): 162-171, 2000.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 162-171
    • Ray, C.1    Klindworth, K.2
  • 203
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel F, French M, Harkonen P, Yabunaka K. Artificial neural network approach for modelling and prediction of algal blooms. Ecological Modelling, 96: 11-28, 1997.
    • (1997) Ecological Modelling , vol.96 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.4
  • 205
    • 0035679359 scopus 로고    scopus 로고
    • Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France)
    • Reyjol Y, Lim P, Belaud A, Lek S. Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France). Ecological Modelling, 146: 131-142, 2001.
    • (2001) Ecological Modelling , vol.146 , pp. 131-142
    • Reyjol, Y.1    Lim, P.2    Belaud, A.3    Lek, S.4
  • 206
    • 11144273669 scopus 로고
    • The perceptron:Aprobabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron:Aprobabilistic model for information storage and organization in the brain. Psychological Review, 65: 388-408, 1958.
    • (1958) Psychological Review , vol.65 , pp. 388-408
    • Rosenblatt, F.1
  • 208
    • 0027332457 scopus 로고
    • Stochastic simulation for characterizing ecological spatial patterns and appraising risk
    • Rossi RE, Borth PW, Tollefson JJ. Stochastic simulation for characterizing ecological spatial patterns and appraising risk. Ecological Applications, 3(4): 719-735, 1993.
    • (1993) Ecological Applications , vol.3 , Issue.4 , pp. 719-735
    • Rossi, R.E.1    Borth, P.W.2    Tollefson, J.J.3
  • 209
    • 22344452395 scopus 로고    scopus 로고
    • Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B
    • Rozema J, Boelen P, Blokker P. Depletion of stratospheric ozone over the Antarctic and Arctic: Responses of plants of polar terrestrial ecosystems to enhanced UV-B. Environmental Pollution, 137(3): 428-442, 2005.
    • (2005) Environmental Pollution , vol.137 , Issue.3 , pp. 428-442
    • Rozema, J.1    Boelen, P.2    Blokker, P.3
  • 210
    • 0004057553 scopus 로고
    • Second EditionMcGraw-Hill, Columbus, USA
    • Rudin W. Functional Analysis (Second Edition). McGraw-Hill, Columbus, USA, 1991.
    • (1991) Functional Analysis
    • Rudin, W.1
  • 211
    • 0012227916 scopus 로고
    • Learning representation by BP errors
    • Rumelhart DE et al.Learning representation by BP errors. Nature, 7: 149-154, 1986.
    • (1986) Nature , vol.7 , pp. 149-154
    • Rumelhart, D.E.1
  • 212
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagation errors. Nature, 323: 533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 214
    • 0000755588 scopus 로고
    • Marine benthic diversity:A comparative study
    • Sanders HL. Marine benthic diversity:A comparative study. The American Naturalist, 102: 243-282, 1968.
    • (1968) The American Naturalist , vol.102 , pp. 243-282
    • Sanders, H.L.1
  • 216
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks as empirical models for estimating phytoplankton production
    • Scardi M. Artificial neural networks as empirical models for estimating phytoplankton production. Marine Ecology Progress Series, 139: 289-299, 1996.
    • (1996) Marine Ecology Progress Series , vol.139 , pp. 289-299
    • Scardi, M.1
  • 217
    • 0033578446 scopus 로고    scopus 로고
    • Developing an empirical model of phytoplankton primary production: A neural network case study
    • Scardi M, Harding LW. Developing an empirical model of phytoplankton primary production: A neural network case study. Ecological. Modelling, 120: 213-223, 1999.
    • (1999) Ecological. Modelling , vol.120 , pp. 213-223
    • Scardi, M.1    Harding, L.W.2
  • 218
    • 0027739099 scopus 로고
    • A review of the development and application of the urban airshed model
    • Scheffe RD, Morris RE. A review of the development and application of the urban airshed model. Atmospheric Environment, 27b(1): 23-39, 1993.
    • (1993) Atmospheric Environment , vol.27b , Issue.1 , pp. 23-39
    • Scheffe, R.D.1    Morris, R.E.2
  • 219
    • 0345411854 scopus 로고    scopus 로고
    • Satellite estimate of grass biomass in a mountainous range in central Italy
    • Schino G, Iannetta M, Martini S et al.Satellite estimate of grass biomass in a mountainous range in central Italy. Agroforestry Systems, 59: 157-162, 2003.
    • (2003) Agroforestry Systems , vol.59 , pp. 157-162
    • Schino, G.1    Iannetta, M.2    Martini, S.3
  • 221
    • 85032111231 scopus 로고    scopus 로고
    • IRRI Biodiversity Software Series. I. LUMP, LINK, AND JOIN: Utility programs for biodiversity research
    • Manila, Philippines, International Rice Research Institute
    • Schoenly KG, Zhang WJ. IRRI Biodiversity Software Series. I. LUMP, LINK, AND JOIN: Utility programs for biodiversity research. IRRI Technical Bulletin No. 1. Manila, Philippines, International Rice Research Institute, 1999.
    • (1999) IRRI Technical Bulletin , vol.1
    • Schoenly, K.G.1    Zhang, W.J.2
  • 222
    • 33750609586 scopus 로고    scopus 로고
    • IRRI Biodiversity Software Series. V. RARE, SPPDISS, and SPPANK: Programs for detecting between-sample difference in community structure
    • International Rice Research Institute, Manila, Philippines
    • Schoenly KG, Zhang WJ. IRRI Biodiversity Software Series. V. RARE, SPPDISS, and SPPANK: programs for detecting between-sample difference in community structure. IRRI Technical Bulletin No. 5. International Rice Research Institute, Manila, Philippines, 1999.
    • (1999) IRRI Technical Bulletin , vol.5
    • Schoenly, K.G.1    Zhang, W.J.2
  • 224
    • 0031189158 scopus 로고    scopus 로고
    • Nonlinear system identification and prediction using orthonormal functions
    • Scott I, Mulgrew B. Nonlinear system identification and prediction using orthonormal functions. IEEE Transactions on Signal Processing, 45: 1842-1853, 1997.
    • (1997) IEEE Transactions on Signal Processing , vol.45 , pp. 1842-1853
    • Scott, I.1    Mulgrew, B.2
  • 225
    • 0030633575 scopus 로고    scopus 로고
    • A penalty-function approach for pruning feedforward NN
    • Setiono R.A penalty-function approach for pruning feedforward NN. Neural Computation, 9(1): 185-204, 1997.
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 185-204
    • Setiono, R.1
  • 226
    • 1642393609 scopus 로고    scopus 로고
    • Carcass enrichment does not alter decay rates or arthropod community structure: A test of the arthropod saturation hypothesis at the anthropology research facility in Knoxville, Tennessee
    • Shahid SA, Schoenly KG, Haskell NH, Hall RD, Zhang WJ. Carcass enrichment does not alter decay rates or arthropod community structure: A test of the arthropod saturation hypothesis at the anthropology research facility in Knoxville, Tennessee. Journal of Medical Entomology, 4: 559-569, 2003.
    • (2003) Journal of Medical Entomology , vol.4 , pp. 559-569
    • Shahid, S.A.1    Schoenly, K.G.2    Haskell, N.H.3    Hall, R.D.4    Zhang, W.J.5
  • 227
  • 228
    • 33744980453 scopus 로고    scopus 로고
    • Self-organising map methods in integrated modelling of environmental and economic systems
    • Shanmuganathan S, Collins P, Buckeridge J. Self-organising map methods in integrated modelling of environmental and economic systems. Environment Modelling and Software, 21(9): 1247-1256, 2006.
    • (2006) Environment Modelling and Software , vol.21 , Issue.9 , pp. 1247-1256
    • Shanmuganathan, S.1    Collins, P.2    Buckeridge, J.3
  • 229
    • 0010480416 scopus 로고
    • Recent advances in numerical techniques for large-scale optimization
    • Miller, Sutton, and Werbos (Eds.). MIT Press, Cambridge, USA
    • Shanno DF. Recent advances in numerical techniques for large-scale optimization. Neural Networks for Control, Miller, Sutton, and Werbos (Eds.). MIT Press, Cambridge, USA, 1990.
    • (1990) Neural Networks for Control
    • Shanno, D.F.1
  • 230
    • 0742323231 scopus 로고    scopus 로고
    • Neural networks for predicting nitrate-nitrogen in drainage water
    • Sharma V, Negi SC, Rudra RP et al.Neural networks for predicting nitrate-nitrogen in drainage water. Agricultural Water Management, 63: 169-183, 2003.
    • (2003) Agricultural Water Management , vol.63 , pp. 169-183
    • Sharma, V.1    Negi, S.C.2    Rudra, R.P.3
  • 233
    • 0001034646 scopus 로고
    • Properties of the rarefaction diversity measurements
    • Simberloff D. Properties of the rarefaction diversity measurements. The American Naturalist, 196: 414-418, 1972.
    • (1972) The American Naturalist , vol.196 , pp. 414-418
    • Simberloff, D.1
  • 235
    • 0021595487 scopus 로고
    • Non-parametric estimation of species richness
    • Smith EP, van Belle G. Non-parametric estimation of species richness. Biometrics, 40: 119-129, 1984.
    • (1984) Biometrics , vol.40 , pp. 119-129
    • Smith, E.P.1    Van Belle, G.2
  • 238
    • 34047206999 scopus 로고    scopus 로고
    • Self-organizing mapping of benthic macroinvertebrate communities implemented to community assessment and water quality evaluation
    • Song MY, Hwang HJ, Kwark IS et al.Self-organizing mapping of benthic macroinvertebrate communities implemented to community assessment and water quality evaluation. Ecological Modelling, 203: 18-25, 2007.
    • (2007) Ecological Modelling , vol.203 , pp. 18-25
    • Song, M.Y.1    Hwang, H.J.2    Kwark, I.S.3
  • 239
    • 0009846660 scopus 로고    scopus 로고
    • VC dimension of neural networks
    • Bishop CM (Ed.), NATO ASI Series, Springer
    • Sontag ED. VC dimension of neural networks. Neural Networks and Machine Learning, Bishop CM (Ed.). 69-95, NATO ASI Series, Springer, 1998.
    • (1998) Neural Networks and Machine Learning , pp. 69-95
    • Sontag, E.D.1
  • 240
    • 0347483208 scopus 로고
    • Probabilistic neural networks for classification, mapping and associative memory
    • San Diego, USA
    • Sprecht DF. Probabilistic neural networks for classification, mapping and associative memory. IEEE ICNN. San Diego, USA, 1988.
    • (1988) IEEE ICNN
    • Sprecht, D.F.1
  • 241
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Sprecht DF. Probabilistic neural networks. Neural Networks, 3(1): 109-118, 1990.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Sprecht, D.F.1
  • 243
    • 0021556420 scopus 로고
    • Environmental monitoring using populations of birds and small mammals: Analysis of sampling effort
    • Steele BB, Bayn RL, ValGrant C. Environmental monitoring using populations of birds and small mammals: Analysis of sampling effort. Biological Conservation, 30: 157-172, 1984.
    • (1984) Biological Conservation , vol.30 , pp. 157-172
    • Steele, B.B.1    Bayn, R.L.2    Valgrant, C.3
  • 244
    • 16844365942 scopus 로고    scopus 로고
    • Climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania
    • Sutherst RW, Maywald GA. Climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania. Environmental Entomology, 34(2): 317-335, 2005.
    • (2005) Environmental Entomology , vol.34 , Issue.2 , pp. 317-335
    • Sutherst, R.W.1    Maywald, G.A.2
  • 246
    • 33646848814 scopus 로고    scopus 로고
    • Predictive models in ecology: Comparison of performances and assessment of applicability
    • Tan CO, Ozesmi U, Beklioglu M et al.Predictive models in ecology: Comparison of performances and assessment of applicability. Ecological Informatics, 1(2): 195-211, 2006.
    • (2006) Ecological Informatics , vol.1 , Issue.2 , pp. 195-211
    • Tan, C.O.1    Ozesmi, U.2    Beklioglu, M.3
  • 247
    • 34147112172 scopus 로고    scopus 로고
    • Predicting diatom reference communities at the French hydrosystem scale:Afirst step towards the definition of the good ecological status
    • Tison J, Park YS, Coste M, Wasson JG, Rimet F, Ector L, Delmas F. Predicting diatom reference communities at the French hydrosystem scale:Afirst step towards the definition of the good ecological status. Ecological Modelling, 203: 99-108, 2007.
    • (2007) Ecological Modelling , vol.203 , pp. 99-108
    • Tison, J.1    Park, Y.S.2    Coste, M.3    Wasson, J.G.4    Rimet, F.5    Ector, L.6    Delmas, F.7
  • 248
    • 0025593679 scopus 로고
    • SuperSAB: Fast adaptation back propagation with good scaling properties
    • Tollenaere T. SuperSAB: Fast adaptation back propagation with good scaling properties. Neural Networks, 3(5): 561-573, 1990.
    • (1990) Neural Networks , vol.3 , Issue.5 , pp. 561-573
    • Tollenaere, T.1
  • 249
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant LG. A theory of the learnable. Communications of the ACM, 27(11): 1134-1142, 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 250
    • 42749087480 scopus 로고    scopus 로고
    • Day-ahead price forecasting in restructured power systems using artificial neural networks
    • Vahidinasab V. Day-ahead price forecasting in restructured power systems using artificial neural networks. Electric Power Systems Research, 78(8): 1332-1342, 2008.
    • (2008) Electric Power Systems Research , vol.78 , Issue.8 , pp. 1332-1342
    • Vahidinasab, V.1
  • 251
    • 33847637094 scopus 로고    scopus 로고
    • Yield-SAFE: A parameter- sparse, processbased dynamic model for predicting resource capture, growth, and production in agroforestry systems
    • vanderWerf W, Keesman K, Burgesss P et al.Yield-SAFE: A parameter- sparse, processbased dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecological Engineering, 29(4): 419-433, 2007.
    • (2007) Ecological Engineering , vol.29 , Issue.4 , pp. 419-433
    • Vanderwerf, W.1    Keesman, K.2    Burgesss, P.3
  • 254
    • 0032594959 scopus 로고    scopus 로고
    • An overviewof statistical learning theory
    • Vapnik V. An overviewof statistical learning theory. IEEE Transactions on Neural Networks, 10: 988-999, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.1
  • 255
    • 0041893605 scopus 로고
    • Computation and learning in the context of neural network capacity
    • Wechsler H (Ed.), Academic Press
    • Venkatech S. Computation and learning in the context of neural network capacity. Neural Networks for Perception Vol 2, Wechsler H (Ed.). 173-207, Academic Press, 1992.
    • (1992) Neural Networks for Perception , vol.2 , pp. 173-207
    • Venkatech, S.1
  • 256
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia
    • Viotti P, Liuti G, Di Genova P. Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia. Ecological Modelling, 148(1): 27-46, 2002.
    • (2002) Ecological Modelling , vol.148 , Issue.1 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Di Genova, P.3
  • 259
    • 0000966097 scopus 로고
    • Modeling distribution of insect development time: A literature review and application of the Weibull function
    • Wagner TL, Wu H, Sharpe PJH et al.Modeling distribution of insect development time: A literature review and application of the Weibull function. Annuals of Entomological Society of America, 77: 475-487, 1984.
    • (1984) Annuals of Entomological Society of America , vol.77 , pp. 475-487
    • Wagner, T.L.1    Wu, H.2    Sharpe, P.3
  • 260
    • 0031925358 scopus 로고    scopus 로고
    • Comparative performance of species richness estimation methods
    • Walther BA, Morand S. Comparative performance of species richness estimation methods. Parasitology, 116: 395-405, 1998.
    • (1998) Parasitology , vol.116 , pp. 395-405
    • Walther, B.A.1    Morand, S.2
  • 262
    • 40949093593 scopus 로고    scopus 로고
    • Using artificial neural networks to determine the relative contribution of abiotic factors influencing the establishment of insect pest species
    • Watts MJ, Worner SP. Using artificial neural networks to determine the relative contribution of abiotic factors influencing the establishment of insect pest species. Ecological Informatics, 3: 64-74, 2008.
    • (2008) Ecological Informatics , vol.3 , pp. 64-74
    • Watts, M.J.1    Worner, S.P.2
  • 263
    • 60649120714 scopus 로고    scopus 로고
    • Estimating the risk of insect species invasion:Kohonen self-organising maps versus k-means clustering
    • Watts MJ, Worner SP. Estimating the risk of insect species invasion:Kohonen self-organising maps versus k-means clustering. Ecological Modelling, 220: 821-829, 2009.
    • (2009) Ecological Modelling , vol.220 , pp. 821-829
    • Watts, M.J.1    Worner, S.P.2
  • 264
    • 0028592838 scopus 로고
    • The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice-a review
    • Way MJ, Heong KL. The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice-a review. Bulletin of Entomological Research, 84: 567-587, 1994.
    • (1994) Bulletin of Entomological Research , vol.84 , pp. 567-587
    • Way, M.J.1    Heong, K.L.2
  • 266
    • 0000517353 scopus 로고
    • Improving the performance of RBF network by learning center locations
    • San Mateo, USA
    • Wettschereck D et al.Improving the performance of RBF network by learning center locations. Advances in Neural Information Processing Systems. San Mateo, USA, 1992.
    • (1992) Advances in Neural Information Processing Systems
    • Wettschereck, D.1
  • 267
    • 0028387642 scopus 로고
    • Neural networks application in industry, business and science
    • Widrow B. Neural networks application in industry, business and science. Communication of the ACM, 37: 93-105, 1994.
    • (1994) Communication of the ACM , vol.37 , pp. 93-105
    • Widrow, B.1
  • 270
    • 0023982347 scopus 로고
    • Neural nets for adaptive filtering and adaptive pattern recognition
    • Widrow B, Winter R. Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer Magazine, 3: 25-39, 1988.
    • (1988) IEEE Computer Magazine , vol.3 , pp. 25-39
    • Widrow, B.1    Winter, R.2
  • 273
    • 0000160546 scopus 로고
    • The little things that run the world
    • Wilson EO. The little things that run the world. Conservation Biology, 1: 344-346, 1987.
    • (1987) Conservation Biology , vol.1 , pp. 344-346
    • Wilson, E.O.1
  • 274
    • 0002677292 scopus 로고
    • Predicting the establishment of exotic pests in relation to climate
    • Sharp JL, Hallman GJ (Eds.).Westview Press, Boulder, USA
    • Worner SP. Predicting the establishment of exotic pests in relation to climate. Quarantine Treatments for Pests of Food Plants, Sharp JL, Hallman GJ (Eds.).Westview Press, Boulder, USA, 1994.
    • (1994) Quarantine Treatments for Pests of Food Plants
    • Worner, S.P.1
  • 275
    • 33747603206 scopus 로고    scopus 로고
    • Modelling global insect pest species assemblages to determine risk of invasion
    • Worner SP, Gevrey M. Modelling global insect pest species assemblages to determine risk of invasion. Journal of Applied Ecology, 43(5): 858-867, 2006.
    • (2006) Journal of Applied Ecology , vol.43 , Issue.5 , pp. 858-867
    • Worner, S.P.1    Gevrey, M.2
  • 277
    • 66149165735 scopus 로고    scopus 로고
    • A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China
    • Xie YC, Sha ZY, Yu M et al. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecological Modelling, 220: 1810-1818, 2009.
    • (2009) Ecological Modelling , vol.220 , pp. 1810-1818
    • Xie, Y.C.1    Sha, Z.Y.2    Yu, M.3
  • 278
    • 0006005149 scopus 로고    scopus 로고
    • Bayesian ying-yang system and theory as a unified statistical learning approach (1): For unsupervised and semi-unsupervised learning
    • Amari S, Kasabov N (Eds.). Springer-Verlag, Germany
    • Xu L. Bayesian ying-yang system and theory as a unified statistical learning approach (1): For unsupervised and semi-unsupervised learning. Brain-Like Computing and Intelligent Information Systems, Amari S, Kasabov N (Eds.). Springer-Verlag, Germany, 241-274, 1997.
    • (1997) Brain-Like Computing and Intelligent Information Systems , pp. 241-274
    • Xu, L.1
  • 282
    • 28444449121 scopus 로고    scopus 로고
    • Predicting shrimp growth: Artificial neural network versus nonlinear regression models
    • Yu R, Leung PS, Bienfang P. Predicting shrimp growth: Artificial neural network versus nonlinear regression models. Aquacultural Engineering, 34: 26-32, 2006.
    • (2006) Aquacultural Engineering , vol.34 , pp. 26-32
    • Yu, R.1    Leung, P.S.2    Bienfang, P.3
  • 284
    • 33847719830 scopus 로고    scopus 로고
    • Computer inference of network of ecological interactions from sampling data
    • Zhang WJ. Computer inference of network of ecological interactions from sampling data. Environmental Monitoring and Assessment, 124: 253-261, 2007a.
    • (2007) Environmental Monitoring and Assessment , vol.124 , pp. 253-261
    • Zhang, W.J.1
  • 286
    • 34648846726 scopus 로고    scopus 로고
    • Supervised neural network recognition of habitat zones of rice invertebrates
    • Zhang WJ. Supervised neural network recognition of habitat zones of rice invertebrates. Stochastic Environmental Research and Risk Assessment, 21: 729-735, 2007c.
    • (2007) Stochastic Environmental Research and Risk Assessment , vol.21 , pp. 729-735
    • Zhang, W.J.1
  • 287
    • 34249903625 scopus 로고    scopus 로고
    • Pattern classification and recognition of invertebrate functional groups using selforganizing neural networks
    • Zhang WJ. Pattern classification and recognition of invertebrate functional groups using selforganizing neural networks. Environmental Monitoring and Assessment, 130: 415-422, 2007d.
    • (2007) Environmental Monitoring and Assessment , vol.130 , pp. 415-422
    • Zhang, W.J.1
  • 288
    • 33846681532 scopus 로고    scopus 로고
    • Neural network modeling of ecosystems: A case study on cabbage growth system
    • Zhang WJ, Bai CJ, Liu GD. Neural network modeling of ecosystems: A case study on cabbage growth system. Ecological Modelling, 201: 317-325, 2007.
    • (2007) Ecological Modelling , vol.201 , pp. 317-325
    • Zhang, W.J.1    Bai, C.J.2    Liu, G.D.3
  • 289
    • 33750615221 scopus 로고    scopus 로고
    • BarrionAT. Function approximation and documentation of sampling data using artificial neural networks
    • Zhang WJ, BarrionAT. Function approximation and documentation of sampling data using artificial neural networks. Environmental Monitoring and Assessment, 122: 185-201, 2006.
    • (2006) Environmental Monitoring and Assessment , vol.122 , pp. 185-201
    • Zhang, W.J.1
  • 290
    • 84967652599 scopus 로고    scopus 로고
    • Performance of non-parametric richness estimators to hierarchical invertebrate taxa in irrigated rice field
    • Zhang WJ, Feng YJ, Schoenly KG. Performance of non-parametric richness estimators to hierarchical invertebrate taxa in irrigated rice field. International Rice Research Notes, 29(1): 39-41, 2004.
    • (2004) International Rice Research Notes , vol.29 , Issue.1 , pp. 39-41
    • Zhang, W.J.1    Feng, Y.J.2    Schoenly, K.G.3
  • 291
    • 84967652591 scopus 로고    scopus 로고
    • Development of topological functions in neural networks and their application in SOM learning to biodiversity
    • Zhang WJ, Li QH. Development of topological functions in neural networks and their application in SOM learning to biodiversity. The Proceedings of the China Association for Science and Technology, 4(2): 583-586, 2007.
    • (2007) The Proceedings of the China Association for Science and Technology , vol.4 , Issue.2 , pp. 583-586
    • Zhang, W.J.1    Li, Q.H.2
  • 292
    • 36348948096 scopus 로고    scopus 로고
    • Simulation of food intake dynamics of holometabolous insect using functional link artificial neural network
    • Zhang WJ, Liu GH, Dai HQ. Simulation of food intake dynamics of holometabolous insect using functional link artificial neural network. Stochastic Environmental Research and Risk Assessment, 22: 123-133, 2008.
    • (2008) Stochastic Environmental Research and Risk Assessment , vol.22 , pp. 123-133
    • Zhang, W.J.1    Liu, G.H.2    Dai, H.Q.3
  • 294
    • 33750628985 scopus 로고    scopus 로고
    • Functional link artificial neural network and agri-biodiversity analysis
    • Zhang WJ, Qi YH. Functional link artificial neural network and agri-biodiversity analysis. Biodiversity Science, 3: 345-350, 2002.
    • (2002) Biodiversity Science , vol.3 , pp. 345-350
    • Zhang, W.J.1    Qi, Y.H.2
  • 295
    • 84967492155 scopus 로고    scopus 로고
    • IRRI Biodiversity Software Series. II. COLLECT1 and COLLECT2: Programs for calculating statistics of collectors’ curves
    • International Rice Research Institute, Manila, Philippines
    • Zhang WJ, Schoenly KG. IRRI Biodiversity Software Series. II. COLLECT1 and COLLECT2: Programs for calculating statistics of collectors’ curves. IRRI Technical Bulletin No. 2. International Rice Research Institute, Manila, Philippines, 1999.
    • (1999) IRRI Technical Bulletin , vol.2
    • Zhang, W.J.1    Schoenly, K.G.2
  • 296
    • 84967532963 scopus 로고    scopus 로고
    • IRRI Biodiversity Software Series. IV. EXTSPP1 and EXTSPP2: Programs for comparing and performance-testing eight extrapolation-based estimators of total species richness
    • International Rice Research Institute, Manila, Philippines
    • Zhang WJ, Schoenly KG. IRRI Biodiversity Software Series. IV. EXTSPP1 and EXTSPP2: Programs for comparing and performance-testing eight extrapolation-based estimators of total species richness. IRRI Technical Bulletin No. 4. International Rice Research Institute, Manila, Philippines, 1999.
    • (1999) IRRI Technical Bulletin , vol.4
    • Zhang, W.J.1    Schoenly, K.G.2
  • 297
    • 33750628839 scopus 로고    scopus 로고
    • Lumping and correlation analyses of invertebrate taxa in tropical irrigated rice field
    • Zhang WJ, Schoenly KG. Lumping and correlation analyses of invertebrate taxa in tropical irrigated rice field. International Rice Research Notes, 1: 41-43, 2004.
    • (2004) International Rice Research Notes , vol.1 , pp. 41-43
    • Zhang, W.J.1    Schoenly, K.G.2
  • 298
    • 72349099456 scopus 로고    scopus 로고
    • Spatial succession modeling of biological communities: A multi-model approach
    • Zhang WJ, Wei W. Spatial succession modeling of biological communities: A multi-model approach. Environmental Monitoring and Assessment, 158: 213-230, 2009.
    • (2009) Environmental Monitoring and Assessment , vol.158 , pp. 213-230
    • Zhang, W.J.1    Wei, W.2
  • 299
    • 38349153894 scopus 로고    scopus 로고
    • Neural network modeling of survival dynamics of holometabolous insects: A case study
    • Zhang WJ, Zhang XY. Neural network modeling of survival dynamics of holometabolous insects: A case study. Ecological Modelling, 211: 433-443, 2008.
    • (2008) Ecological Modelling , vol.211 , pp. 433-443
    • Zhang, W.J.1    Zhang, X.Y.2
  • 300
    • 37449012506 scopus 로고    scopus 로고
    • Recognizing spatial distribution patterns of grassland insects: Neural network approaches
    • Zhang WJ, Zhong XQ, Liu GH. Recognizing spatial distribution patterns of grassland insects: Neural network approaches. Stochastic Environmental Research and Risk Assessment, 22(2): 207-216, 2008.
    • (2008) Stochastic Environmental Research and Risk Assessment , vol.22 , Issue.2 , pp. 207-216
    • Zhang, W.J.1    Zhong, X.Q.2    Liu, G.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.