-
2
-
-
0004087732
-
-
Washington DC, U.S. Geological Survey. Scale 1:7,500,000, colored, accompanied by a supplementary table of map unit descriptions, prepared for the U.S. Department of Agriculture, Forest Service
-
Bailey, R.G., Avers, P.E., King, T., McNab, W.H. (eds.), 1994. Ecoregions and Subregions of the United States (map). Washington DC, U.S. Geological Survey. Scale 1:7,500,000, colored, accompanied by a supplementary table of map unit descriptions, prepared for the U.S. Department of Agriculture, Forest Service.
-
(1994)
Ecoregions and Subregions of the United States (Map)
-
-
Bailey, R.G.1
Avers, P.E.2
King, T.3
McNab, W.H.4
-
3
-
-
85052770793
-
-
Wadsworth and Brooks/Cole, Monterey, CA, 358 p
-
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regression Trees. Wadsworth and Brooks/Cole, Monterey, CA, 358 p.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
4
-
-
84972539015
-
Neural networks: A review from a statistical perspective
-
Cheng, B., Titterington, D.M., 1994. Neural networks: A review from a statistical perspective. Stat. Sci. 9, 2-54.
-
(1994)
Stat. Sci.
, vol.9
, pp. 2-54
-
-
Cheng, B.1
Titterington, D.M.2
-
5
-
-
84973587732
-
A coefficient of agreement of nominal scales
-
Cohen, J., 1960. A coefficient of agreement of nominal scales. Educ. Psychol. Meas. 20, 37-46.
-
(1960)
Educ. Psychol. Meas.
, vol.20
, pp. 37-46
-
-
Cohen, J.1
-
6
-
-
0026278621
-
A review of assessing the accuracy of classifications of remotely sensed data
-
Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35-46.
-
(1991)
Remote Sens. Environ.
, vol.37
, pp. 35-46
-
-
Congalton, R.G.1
-
8
-
-
0027642557
-
A comparison of two nonparametric estimation schemes: MARS and Neural Networks
-
DeVeaux, R.D., Psichogios, D.C., Ungar, L.H., 1993. A comparison of two nonparametric estimation schemes: MARS and Neural Networks. Comput. Chem. Eng. 8, 819-837.
-
(1993)
Comput. Chem. Eng.
, vol.8
, pp. 819-837
-
-
DeVeaux, R.D.1
Psichogios, D.C.2
Ungar, L.H.3
-
9
-
-
0034923205
-
Modelling spatially explicit forest structural attributes using generalized additive models
-
Frescino, T.S., Edwards, T.C., Jr., Moisen, G.G., 2001. Modelling spatially explicit forest structural attributes using generalized additive models. J. Veg. Sci. 12, 15-26.
-
(2001)
J. Veg. Sci.
, vol.12
, pp. 15-26
-
-
Frescino, T.S.1
Edwards T.C., Jr.2
Moisen, G.G.3
-
10
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Stat. 19, 1-141.
-
(1991)
Ann. Stat.
, vol.19
, pp. 1-141
-
-
Friedman, J.H.1
-
12
-
-
85052767164
-
-
Chapman and Hall, New York, 335 p
-
Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models. Chapman and Hall, New York, 335 p.
-
(1990)
Generalized Additive Models
-
-
Hastie, T.J.1
Tibshirani, R.J.2
-
13
-
-
84972488102
-
Generalized additive models
-
Hastie, T., Tibshirani, R.J., 1986. Generalized additive models. Stat. Sci. 1, 297-318.
-
(1986)
Stat. Sci.
, vol.1
, pp. 297-318
-
-
Hastie, T.1
Tibshirani, R.J.2
-
15
-
-
0030428001
-
Application of neural networks to modelling nonlinear relationships in ecology
-
Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., Aulagnier, S., 1996. Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model. 90, 39-52.
-
(1996)
Ecol. Model
, vol.90
, pp. 39-52
-
-
Lek, S.1
Delacoste, M.2
Baran, P.3
Dimopoulos, I.4
Lauga, J.5
Aulagnier, S.6
-
16
-
-
0344604541
-
Artificial neural networks as a tool in ecological modeling: And introduction
-
Lek, S., Guegan, J.F., 1999. Artificial neural networks as a tool in ecological modeling: And introduction. Ecol. Model. 120, 65-73.
-
(1999)
Ecol. Model
, vol.120
, pp. 65-73
-
-
Lek, S.1
Guegan, J.F.2
-
17
-
-
0004496329
-
Use of generalized linear models and digital data in a forest inventory of northern Utah
-
Moisen, G.G., Edwards, T.C., Jr., 1999. Use of generalized linear models and digital data in a forest inventory of northern Utah. J. Agric. Biol. Environ. S 4, 372-390.
-
(1999)
J. Agric. Biol. Environ. S
, vol.4
, pp. 372-390
-
-
Moisen, G.G.1
Edwards T.C., Jr.2
-
18
-
-
0006178946
-
Problems in the analysis of survey data and a proposal
-
Morgan, J.N., Sonquist, J.A., 1963. Problems in the analysis of survey data and a proposal. J. Am. Stat. Assoc. 58, 415-434.
-
(1963)
J. Am. Stat. Assoc.
, vol.58
, pp. 415-434
-
-
Morgan, J.N.1
Sonquist, J.A.2
-
19
-
-
0000696616
-
Neural networks and related methods for classification
-
Ripley, B.D., 1994. Neural networks and related methods for classification. J. Roy. Stat. Soc. B 56, 409-456.
-
(1994)
J. Roy. Stat. Soc. B
, vol.56
, pp. 409-456
-
-
Ripley, B.D.1
-
21
-
-
0024813940
-
Concepts and techniques of vegetation mapping
-
USDA Forest Service General Technical Report INT-257, Ogden, UT
-
Roberts, D.W., Cooper, S.V., 1989. Concepts and techniques of vegetation mapping. In: Land Classifications Based on Vegetation: Applications for Resource Management. USDA Forest Service General Technical Report INT-257, Ogden, UT, pp. 90-96.
-
(1989)
Land Classifications Based on Vegetation: Applications for Resource Management
, pp. 90-96
-
-
Roberts, D.W.1
Cooper, S.V.2
-
22
-
-
0030613489
-
Performance of a neural network: Mapping forests using GIS and remotely sensed data
-
Skidmore, A.K., Turner, B.J., Brinkhof, W., Knowls, W., 1997. Performance of a neural network: Mapping forests using GIS and remotely sensed data. Photogramm. Eng. Rem. S. 63, 501-514.
-
(1997)
Photogramm. Eng. Rem. S
, vol.63
, pp. 501-514
-
-
Skidmore, A.K.1
Turner, B.J.2
Brinkhof, W.3
Knowls, W.4
-
23
-
-
0003140365
-
Neural networks in applied statistics
-
Stern, H.S., 1996. Neural networks in applied statistics. Technometrics 38, 205-220.
-
(1996)
Technometrics
, vol.38
, pp. 205-220
-
-
Stern, H.S.1
-
24
-
-
0031103298
-
Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model
-
Wang, Y., Dong, D., 1997. Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model. Int. J. Remote Sens. 18, 981-990.
-
(1997)
Int. J. Remote Sens.
, vol.18
, pp. 981-990
-
-
Wang, Y.1
Dong, D.2
|