메뉴 건너뛰기




Volumn 157, Issue 2-3, 2002, Pages 209-225

Comparing five modelling techniques for predicting forest characteristics

Author keywords

Artificial neural network; Classification tree; Forest inventory; MARS; Mulivariate adaptive regression spline; Predictive mapping; Regression tree

Indexed keywords

ECOLOGICAL MODELING; FOREST MANAGEMENT; PREDICTION; VEGETATION MAPPING;

EID: 0037202445     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0304-3800(02)00197-7     Document Type: Article
Times cited : (365)

References (24)
  • 2
    • 0004087732 scopus 로고
    • Washington DC, U.S. Geological Survey. Scale 1:7,500,000, colored, accompanied by a supplementary table of map unit descriptions, prepared for the U.S. Department of Agriculture, Forest Service
    • Bailey, R.G., Avers, P.E., King, T., McNab, W.H. (eds.), 1994. Ecoregions and Subregions of the United States (map). Washington DC, U.S. Geological Survey. Scale 1:7,500,000, colored, accompanied by a supplementary table of map unit descriptions, prepared for the U.S. Department of Agriculture, Forest Service.
    • (1994) Ecoregions and Subregions of the United States (Map)
    • Bailey, R.G.1    Avers, P.E.2    King, T.3    McNab, W.H.4
  • 4
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng, B., Titterington, D.M., 1994. Neural networks: A review from a statistical perspective. Stat. Sci. 9, 2-54.
    • (1994) Stat. Sci. , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 5
    • 84973587732 scopus 로고
    • A coefficient of agreement of nominal scales
    • Cohen, J., 1960. A coefficient of agreement of nominal scales. Educ. Psychol. Meas. 20, 37-46.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 6
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35-46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 8
    • 0027642557 scopus 로고
    • A comparison of two nonparametric estimation schemes: MARS and Neural Networks
    • DeVeaux, R.D., Psichogios, D.C., Ungar, L.H., 1993. A comparison of two nonparametric estimation schemes: MARS and Neural Networks. Comput. Chem. Eng. 8, 819-837.
    • (1993) Comput. Chem. Eng. , vol.8 , pp. 819-837
    • DeVeaux, R.D.1    Psichogios, D.C.2    Ungar, L.H.3
  • 9
    • 0034923205 scopus 로고    scopus 로고
    • Modelling spatially explicit forest structural attributes using generalized additive models
    • Frescino, T.S., Edwards, T.C., Jr., Moisen, G.G., 2001. Modelling spatially explicit forest structural attributes using generalized additive models. J. Veg. Sci. 12, 15-26.
    • (2001) J. Veg. Sci. , vol.12 , pp. 15-26
    • Frescino, T.S.1    Edwards T.C., Jr.2    Moisen, G.G.3
  • 10
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Stat. 19, 1-141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 13
    • 84972488102 scopus 로고
    • Generalized additive models
    • Hastie, T., Tibshirani, R.J., 1986. Generalized additive models. Stat. Sci. 1, 297-318.
    • (1986) Stat. Sci. , vol.1 , pp. 297-318
    • Hastie, T.1    Tibshirani, R.J.2
  • 15
    • 0030428001 scopus 로고    scopus 로고
    • Application of neural networks to modelling nonlinear relationships in ecology
    • Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., Aulagnier, S., 1996. Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model. 90, 39-52.
    • (1996) Ecol. Model , vol.90 , pp. 39-52
    • Lek, S.1    Delacoste, M.2    Baran, P.3    Dimopoulos, I.4    Lauga, J.5    Aulagnier, S.6
  • 16
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modeling: And introduction
    • Lek, S., Guegan, J.F., 1999. Artificial neural networks as a tool in ecological modeling: And introduction. Ecol. Model. 120, 65-73.
    • (1999) Ecol. Model , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 17
    • 0004496329 scopus 로고    scopus 로고
    • Use of generalized linear models and digital data in a forest inventory of northern Utah
    • Moisen, G.G., Edwards, T.C., Jr., 1999. Use of generalized linear models and digital data in a forest inventory of northern Utah. J. Agric. Biol. Environ. S 4, 372-390.
    • (1999) J. Agric. Biol. Environ. S , vol.4 , pp. 372-390
    • Moisen, G.G.1    Edwards T.C., Jr.2
  • 18
    • 0006178946 scopus 로고
    • Problems in the analysis of survey data and a proposal
    • Morgan, J.N., Sonquist, J.A., 1963. Problems in the analysis of survey data and a proposal. J. Am. Stat. Assoc. 58, 415-434.
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 415-434
    • Morgan, J.N.1    Sonquist, J.A.2
  • 19
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • Ripley, B.D., 1994. Neural networks and related methods for classification. J. Roy. Stat. Soc. B 56, 409-456.
    • (1994) J. Roy. Stat. Soc. B , vol.56 , pp. 409-456
    • Ripley, B.D.1
  • 22
    • 0030613489 scopus 로고    scopus 로고
    • Performance of a neural network: Mapping forests using GIS and remotely sensed data
    • Skidmore, A.K., Turner, B.J., Brinkhof, W., Knowls, W., 1997. Performance of a neural network: Mapping forests using GIS and remotely sensed data. Photogramm. Eng. Rem. S. 63, 501-514.
    • (1997) Photogramm. Eng. Rem. S , vol.63 , pp. 501-514
    • Skidmore, A.K.1    Turner, B.J.2    Brinkhof, W.3    Knowls, W.4
  • 23
    • 0003140365 scopus 로고    scopus 로고
    • Neural networks in applied statistics
    • Stern, H.S., 1996. Neural networks in applied statistics. Technometrics 38, 205-220.
    • (1996) Technometrics , vol.38 , pp. 205-220
    • Stern, H.S.1
  • 24
    • 0031103298 scopus 로고    scopus 로고
    • Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model
    • Wang, Y., Dong, D., 1997. Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model. Int. J. Remote Sens. 18, 981-990.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 981-990
    • Wang, Y.1    Dong, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.