메뉴 건너뛰기




Volumn 22, Issue 2, 2008, Pages 207-216

Recognizing spatial distribution patterns of grassland insects: Neural network approaches

Author keywords

BP neural network; Insects; Learning vector quantization neural network; Linear discriminant analysis; Linear neural network; Recognition; Spatial distribution patterns

Indexed keywords

GRASSLAND INSECTS; LEARNING VECTOR QUANTIZATION NEURAL NETWORK; LINEAR DISCRIMINANT ANALYSIS; SPATIAL DISTRIBUTION PATTERNS;

EID: 37449012506     PISSN: 14363240     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00477-007-0108-3     Document Type: Article
Times cited : (35)

References (33)
  • 1
    • 0035117652 scopus 로고    scopus 로고
    • Modelling sediment transfer in Malawi: Comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data set
    • Abrahart RJ, White SM (2001) Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data set. Phys Chem Earth (B) 26(1):19-24
    • (2001) Phys Chem Earth (B) , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 2
    • 27844550324 scopus 로고    scopus 로고
    • Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks
    • Acharya C, Mohanty S, Sukla LB, Misra VN (2006) Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks. Ecol Modell 190(1-2):223-230
    • (2006) Ecol Modell , vol.190 , Issue.1-2 , pp. 223-230
    • Acharya, C.1    Mohanty, S.2    Sukla, L.B.3    Misra, V.N.4
  • 3
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data
    • Almasri MN, Kaluarachchi JJ (2005) Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ Modell Softw 20:851-871
    • (2005) Environ Modell Softw , vol.20 , pp. 851-871
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 4
    • 0033578382 scopus 로고    scopus 로고
    • The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake
    • Brosse S, Guegan JF, Tourenq JN et al (1999) The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol Modell 120:299-311
    • (1999) Ecol Modell , vol.120 , pp. 299-311
    • Brosse, S.1    Guegan, J.F.2    Tourenq, J.N.3
  • 5
    • 0000297282 scopus 로고
    • Conservation of neotropical insects: Insects as indicators
    • In: Collins NM, Thomas JA (eds) Academic, London
    • Brown KS Jr (1991) Conservation of neotropical insects: Insects as indicators. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic, London, pp 349-404
    • (1991) The Conservation of Insects and Their Habitats , pp. 349-404
    • Brown Jr., K.S.1
  • 6
    • 0035673791 scopus 로고    scopus 로고
    • Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps
    • Cereghino R, Giraudel JL, Compin A (2001) Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps. Ecol Modell 146:167-180
    • (2001) Ecol Modell , vol.146 , pp. 167-180
    • Cereghino, R.1    Giraudel, J.L.2    Compin, A.3
  • 7
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon TS, Park YS, Moon KH et al (1996) Patternizing communities by using an artificial neural network. Ecol Modell 90:69-78
    • (1996) Ecol Modell , vol.90 , pp. 69-78
    • Chon, T.S.1    Park, Y.S.2    Moon, K.H.3
  • 8
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson CW, Abrahart RJ, Shamseldin AY et al (2006) Flood estimation at ungauged sites using artificial neural networks. J Hydrol 319:391-409
    • (2006) J Hydrol , vol.319 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3
  • 10
    • 32244435216 scopus 로고    scopus 로고
    • Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
    • Filippi AM, Jensen JR (2006) Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens Environ 100:512-530
    • (2006) Remote Sens Environ , vol.100 , pp. 512-530
    • Filippi, A.M.1    Jensen, J.R.2
  • 12
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464-1480
    • (1990) Proc IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 14
    • 0027331698 scopus 로고
    • Invertebrate assemblages: Their use as indicators in conservation planning
    • Kremen C, Colwell RK, Erwin TL, Murphy DD (1993) Invertebrate assemblages: Their use as indicators in conservation planning. Conserv Biol 7:796-808
    • (1993) Conserv Biol , vol.7 , pp. 796-808
    • Kremen, C.1    Colwell, R.K.2    Erwin, T.L.3    Murphy, D.D.4
  • 15
    • 0030428001 scopus 로고    scopus 로고
    • Application of neural networks to modelling non-linear relationships in ecology
    • Lek S, Delacoste M, Baran P et al (1996) Application of neural networks to modelling non-linear relationships in ecology. Ecol Modell 90:39-52
    • (1996) Ecol Modell , vol.90 , pp. 39-52
    • Lek, S.1    Delacoste, M.2    Baran, P.3
  • 16
    • 0038792227 scopus 로고    scopus 로고
    • Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks
    • Maravelias CD, Haralabous J, Papaconstantinou C (2003) Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar Ecol Prog Ser 255:249-258
    • (2003) Mar Ecol Prog Ser , vol.255 , pp. 249-258
    • Maravelias, C.D.1    Haralabous, J.2    Papaconstantinou, C.3
  • 17
    • 0037380774 scopus 로고    scopus 로고
    • Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination
    • Marchant JA, Onyango CM (2003) Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/ soil discrimination. Comput Electron Agric 39:3-22
    • (2003) Comput Electron Agric , vol.39 , pp. 3-22
    • Marchant, J.A.1    Onyango, C.M.2
  • 18
    • 0038076657 scopus 로고    scopus 로고
    • Mathworks MATLAB 6.5
    • Mathworks (2002) Neural network toolbox, MATLAB 6.5
    • (2002) Neural Network Toolbox
  • 20
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra SMS, Khare M (2006) Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol Modell 190(1-2):99-115
    • (2006) Ecol Modell , vol.190 , Issue.1-2 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 21
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Modell 178:389-397
    • (2004) Ecol Modell , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 22
    • 0031591149 scopus 로고    scopus 로고
    • Prediction of functional characteristics of ecosystems: A comparison of artificial neural networks and regression models
    • Paruelo JM, Tomasel F (1997) Prediction of functional characteristics of ecosystems: A comparison of artificial neural networks and regression models. Ecol Modell 98:173-186
    • (1997) Ecol Modell , vol.98 , pp. 173-186
    • Paruelo, J.M.1    Tomasel, F.2
  • 23
    • 0031212622 scopus 로고    scopus 로고
    • The use of neural networks in agroecologica modeling
    • Schultz A, Wieland R (1997) The use of neural networks in agroecologica modeling. Comput Electron Agric 18:73-90
    • (1997) Comput Electron Agric , vol.18 , pp. 73-90
    • Schultz, A.1    Wieland, R.2
  • 24
    • 0032029999 scopus 로고    scopus 로고
    • Comparison of image feature extraction for classification of swine thermal comfort behavior
    • Shao J, Xin H, Harmon JD (1998) Comparison of image feature extraction for classification of swine thermal comfort behavior. Comput Electron Agric 19:223-232
    • (1998) Comput Electron Agric , vol.19 , pp. 223-232
    • Shao, J.1    Xin, H.2    Harmon, J.D.3
  • 25
    • 28444499275 scopus 로고    scopus 로고
    • The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands
    • Smith DW, El-Din MG, Prepas EE (2006) The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands. Ecol Modell 191(1):19-32
    • (2006) Ecol Modell , vol.191 , Issue.1 , pp. 19-32
    • Smith, D.W.1    El-Din, M.G.2    Prepas, E.E.3
  • 28
    • 28444449121 scopus 로고    scopus 로고
    • Predicting shrimp growth: Artificial neural network versus non-linear regression models
    • Yu R, Leung PS, Bienfang P (2006) Predicting shrimp growth: Artificial neural network versus non-linear regression models. Aquac Eng 34:26-32
    • (2006) Aquac Eng , vol.34 , pp. 26-32
    • Yu, R.1    Leung, P.S.2    Bienfang, P.3
  • 29
    • 33750628985 scopus 로고    scopus 로고
    • Functional link artificial neural network and agri-biodiversity analysis
    • Zhang WJ, Qi YH (2002) Functional link artificial neural network and agri-biodiversity analysis. Biodivers Sci 3:345-350
    • (2002) Biodivers Sci , vol.3 , pp. 345-350
    • Zhang, W.J.1    Qi, Y.H.2
  • 30
    • 33750615221 scopus 로고    scopus 로고
    • Function approximation and documentation of sampling data using artificial neural networks
    • Zhang WJ, Barrion AT (2006) Function approximation and documentation of sampling data using artificial neural networks. Environ Monit Assess 122(1-3):185-201
    • (2006) Environ Monit Assess , vol.122 , Issue.1-3 , pp. 185-201
    • Zhang, W.J.1    Barrion, A.T.2
  • 31
    • 34648846726 scopus 로고    scopus 로고
    • Supervised neural network recognition of habitat zones of rice invertebrates
    • (in press)
    • Zhang WJ (2007a) Supervised neural network recognition of habitat zones of rice invertebrates. Stochastic Environ Res Risk Assess (in press)
    • (2007) Stochastic Environ Res Risk Assess
    • Zhang, W.J.1
  • 32
    • 34249903625 scopus 로고    scopus 로고
    • Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks
    • (in press)
    • Zhang WJ (2007b) Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks. Environ Monit Assess (in press)
    • (2007) Environ Monit Assess
    • Zhang, W.J.1
  • 33
    • 33846681532 scopus 로고    scopus 로고
    • Neural network modeling of ecosystems: A case study on cabbage growth system
    • Zhang WJ, Bai CJ, Liu GD (2007) Neural network modeling of ecosystems: A case study on cabbage growth system. Ecol Modell 201:317-325
    • (2007) Ecol Modell , vol.201 , pp. 317-325
    • Zhang, W.J.1    Bai, C.J.2    Liu, G.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.