메뉴 건너뛰기




Volumn 211, Issue 3-4, 2008, Pages 433-443

Neural network modeling of survival dynamics of holometabolous insects: A case study

Author keywords

Artificial neural network; Empirical models; Holometabolous insects; Modeling; Probabilistic density functions; Survival dynamics

Indexed keywords

BIODIVERSITY; LIFE CYCLE; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBABILITY DENSITY FUNCTION;

EID: 38349153894     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2007.09.026     Document Type: Article
Times cited : (17)

References (40)
  • 1
    • 3142691280 scopus 로고    scopus 로고
    • Hourly temperature forecasting using abductive networks
    • Abdel-Aal R.E. Hourly temperature forecasting using abductive networks. Eng. Appl. Artif. Intell. 17 (2004) 543-556
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , pp. 543-556
    • Abdel-Aal, R.E.1
  • 2
    • 0035117652 scopus 로고    scopus 로고
    • Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data set
    • Abrahart R.J., and White S.M. Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data set. Phys. Chem. Earth (B) 26 1 (2001) 19-24
    • (2001) Phys. Chem. Earth (B) , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 3
    • 27844550324 scopus 로고    scopus 로고
    • Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks.
    • Acharya C., Mohanty S., Sukla L.B., and Misra V.N. Prediction of sulphur removal with Acidithiobacillus sp. using artificial neural networks. Ecol. Modell. 190 1-2 (2006) 223-230
    • (2006) Ecol. Modell. , vol.190 , Issue.1-2 , pp. 223-230
    • Acharya, C.1    Mohanty, S.2    Sukla, L.B.3    Misra, V.N.4
  • 4
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data
    • Almasri M.N., and Kaluarachchi J.J. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Modell. Software 20 (2005) 851-871
    • (2005) Environ. Modell. Software , vol.20 , pp. 851-871
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 5
    • 0037107821 scopus 로고    scopus 로고
    • Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks
    • Ballester E.B., Valls G.C.I., Carrasco-Rodriguez J.L., Olivas E.S., and del Valle-Tascon S. Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks. Ecol. Modell. 156 1 (2002) 27-41
    • (2002) Ecol. Modell. , vol.156 , Issue.1 , pp. 27-41
    • Ballester, E.B.1    Valls, G.C.I.2    Carrasco-Rodriguez, J.L.3    Olivas, E.S.4    del Valle-Tascon, S.5
  • 6
    • 0037084856 scopus 로고    scopus 로고
    • Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri)
    • Bradshaw C.J.A., Davis L.S., Purvis M., et al. Using artificial neural networks to model the suitability of coastline for breeding by New Zealand fur seals (Arctocephalus forsteri). Ecol. Modell. 148 2 (2002) 111-131
    • (2002) Ecol. Modell. , vol.148 , Issue.2 , pp. 111-131
    • Bradshaw, C.J.A.1    Davis, L.S.2    Purvis, M.3
  • 7
    • 0035673791 scopus 로고    scopus 로고
    • Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps
    • Cereghino R., Giraudel J.L., and Compin A. Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps. Ecol. Modell. 146 (2001) 167-180
    • (2001) Ecol. Modell. , vol.146 , pp. 167-180
    • Cereghino, R.1    Giraudel, J.L.2    Compin, A.3
  • 9
    • 32244435216 scopus 로고    scopus 로고
    • Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
    • Filippi A.M., and Jensen J.R. Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens. Environ. 100 (2006) 512-530
    • (2006) Remote Sens. Environ. , vol.100 , pp. 512-530
    • Filippi, A.M.1    Jensen, J.R.2
  • 11
    • 33646491431 scopus 로고    scopus 로고
    • Two-way interaction of input variables in the sensitivity analysis of neural network models
    • Gevrey M., Dimopoulos I., and Lek S. Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecol. Modell. 195 1-2 (2006) 43-50
    • (2006) Ecol. Modell. , vol.195 , Issue.1-2 , pp. 43-50
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 14
    • 17144471031 scopus 로고    scopus 로고
    • Explanation of the observed structure of functional feeding groups of aquatic macro-invertebrates by an ecological model and the maximum exergy principle
    • JF{cyrillic}rgensen S.E., Verdonschot P., and Lek S. Explanation of the observed structure of functional feeding groups of aquatic macro-invertebrates by an ecological model and the maximum exergy principle. Ecol. Modell. 158 3 (2002) 223-231
    • (2002) Ecol. Modell. , vol.158 , Issue.3 , pp. 223-231
    • JFrgensen, S.E.1    Verdonschot, P.2    Lek, S.3
  • 15
    • 33846653402 scopus 로고    scopus 로고
    • An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs
    • Kilic H., Soyupak S., Tuzun I., et al. An automata networks based preprocessing technique for artificial neural network modelling of primary production levels in reservoirs. Ecol. Modell. 201 3-4 (2007) 359-368
    • (2007) Ecol. Modell. , vol.201 , Issue.3-4 , pp. 359-368
    • Kilic, H.1    Soyupak, S.2    Tuzun, I.3
  • 16
    • 37849186107 scopus 로고    scopus 로고
    • Using artificial neural network for reservoir eutrophication prediction
    • Kuo J.T., Hsieh M.H., Lung W.S., et al. Using artificial neural network for reservoir eutrophication prediction. Ecol. Modell. 200 1-2 (2007) 171-177
    • (2007) Ecol. Modell. , vol.200 , Issue.1-2 , pp. 171-177
    • Kuo, J.T.1    Hsieh, M.H.2    Lung, W.S.3
  • 17
    • 0042728108 scopus 로고    scopus 로고
    • Estimations of trout density and biomass: a neural networks approach
    • Lek S., and Baran P. Estimations of trout density and biomass: a neural networks approach. Nonlinear Anal. Theory Methods Appl. 30 8 (1997) 4985-4990
    • (1997) Nonlinear Anal. Theory Methods Appl. , vol.30 , Issue.8 , pp. 4985-4990
    • Lek, S.1    Baran, P.2
  • 18
    • 0037107822 scopus 로고    scopus 로고
    • A non-destructive morphometric technique to predict Ligula intestinalis L. plerocercoid load in roach (Rutilus rutilus L.) abdominal cavity
    • Loot G., Giraudel J.L., and Lek S. A non-destructive morphometric technique to predict Ligula intestinalis L. plerocercoid load in roach (Rutilus rutilus L.) abdominal cavity. Ecol. Modell. 156 1 (2002) 1-11
    • (2002) Ecol. Modell. , vol.156 , Issue.1 , pp. 1-11
    • Loot, G.1    Giraudel, J.L.2    Lek, S.3
  • 19
    • 0037380774 scopus 로고    scopus 로고
    • Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination
    • Marchant J.A., and Onyango C.M. Comparison of a Bayesian classifier with a multilayer feed-forward neural network using the example of plant/weed/soil discrimination. Comput. Electron. Agric. 39 (2003) 3-22
    • (2003) Comput. Electron. Agric. , vol.39 , pp. 3-22
    • Marchant, J.A.1    Onyango, C.M.2
  • 20
    • 38349184149 scopus 로고    scopus 로고
    • Mathworks, 2002. Neural Network Toolbox, MATLAB 6.5.
  • 21
    • 13844306875 scopus 로고    scopus 로고
    • Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin
    • McKenna J.E. Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin. Trans. Am. Fish. Soc. 134 1 (2005) 28-43
    • (2005) Trans. Am. Fish. Soc. , vol.134 , Issue.1 , pp. 28-43
    • McKenna, J.E.1
  • 22
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predicting forest characteristics
    • Moisen G.G., and Frescino T.S. Comparing five modelling techniques for predicting forest characteristics. Ecol. Modell. 157 2-3 (2002) 209-225
    • (2002) Ecol. Modell. , vol.157 , Issue.2-3 , pp. 209-225
    • Moisen, G.G.1    Frescino, T.S.2
  • 23
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra S.M.S., and Khare M. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol. Modell. 190 1-2 (2006) 99-115
    • (2006) Ecol. Modell. , vol.190 , Issue.1-2 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 24
    • 28444499275 scopus 로고    scopus 로고
    • The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands
    • Nour M.H., Smith D.W., El-Din M.G., et al. The application of artificial neural networks to flow and phosphorus dynamics in small streams on the Boreal Plain, with emphasis on the role of wetlands. Ecol. Modell. 191 1 (2006) 19-32
    • (2006) Ecol. Modell. , vol.191 , Issue.1 , pp. 19-32
    • Nour, M.H.1    Smith, D.W.2    El-Din, M.G.3
  • 25
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks
    • Olden J.D., and Jackson D.A. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Modell. 154 1-2 (2002) 135-150
    • (2002) Ecol. Modell. , vol.154 , Issue.1-2 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 26
    • 33747102371 scopus 로고    scopus 로고
    • Rediscovering the species in community-wide predictive modeling
    • Olden J.D., Joy M.K., and Death R.G. Rediscovering the species in community-wide predictive modeling. Ecol. Appl. 16 4 (2006) 1449-1460
    • (2006) Ecol. Appl. , vol.16 , Issue.4 , pp. 1449-1460
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 27
    • 33646128233 scopus 로고    scopus 로고
    • Methodological issues in building, training, and testing artificial neural networks in ecological applications
    • Ozesmi S.L., Tan C.O., and Ozesmi U. Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecol. Modell. 195 1-2 (2006) 83-93
    • (2006) Ecol. Modell. , vol.195 , Issue.1-2 , pp. 83-93
    • Ozesmi, S.L.1    Tan, C.O.2    Ozesmi, U.3
  • 28
    • 11444255160 scopus 로고    scopus 로고
    • Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling
    • Pastor-Barcenas O., Soria-Olivas E., and Marti{dotless}n-Guerrero J.D. Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modeling. Ecol. Modell. 182 (2005) 149-158
    • (2005) Ecol. Modell. , vol.182 , pp. 149-158
    • Pastor-Barcenas, O.1    Soria-Olivas, E.2    Martin-Guerrero, J.D.3
  • 29
    • 0036721959 scopus 로고    scopus 로고
    • SPECIES: a spatial evaluation of climate impact on the envelope of species
    • Pearson R.G., Dawson T.P., Berry P.M., and Harrison P.A. SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol. Modell. 154 3 (2002) 289-300
    • (2002) Ecol. Modell. , vol.154 , Issue.3 , pp. 289-300
    • Pearson, R.G.1    Dawson, T.P.2    Berry, P.M.3    Harrison, P.A.4
  • 31
    • 0031212622 scopus 로고    scopus 로고
    • The use of neural networks in agroecologica modeling
    • Schultz A., and Wieland R. The use of neural networks in agroecologica modeling. Comput. Electron. Agric. 18 (1997) 73-90
    • (1997) Comput. Electron. Agric. , vol.18 , pp. 73-90
    • Schultz, A.1    Wieland, R.2
  • 32
    • 0742323231 scopus 로고    scopus 로고
    • Neural networks for predicting nitrate-nitrogen in drainage water
    • Sharma V., Negi S.C., Rudra R.P., et al. Neural networks for predicting nitrate-nitrogen in drainage water. Agric. Water Manage. 63 (2003) 169-183
    • (2003) Agric. Water Manage. , vol.63 , pp. 169-183
    • Sharma, V.1    Negi, S.C.2    Rudra, R.P.3
  • 33
    • 33646848814 scopus 로고    scopus 로고
    • Predictive models in ecology: comparison of performances and assessment of applicability
    • Tan C.O., Ozesmi U., Beklioglu M., Per E., and Kurt B. Predictive models in ecology: comparison of performances and assessment of applicability. Ecol. Inform. 1 2 (2006) 195-211
    • (2006) Ecol. Inform. , vol.1 , Issue.2 , pp. 195-211
    • Tan, C.O.1    Ozesmi, U.2    Beklioglu, M.3    Per, E.4    Kurt, B.5
  • 34
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia
    • Viotti P., Liuti G., and Di Genova P. Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecol. Modell. 148 1 (2002) 27-46
    • (2002) Ecol. Modell. , vol.148 , Issue.1 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Di Genova, P.3
  • 35
    • 0000966097 scopus 로고
    • Modeling distribution of insect development time: a literature review and application of the Weibull function
    • Wagner T.L., Wu H., Sharpe P.J.H., et al. Modeling distribution of insect development time: a literature review and application of the Weibull function. Annu. Entomol. Soc. Am. 77 (1984) 475-487
    • (1984) Annu. Entomol. Soc. Am. , vol.77 , pp. 475-487
    • Wagner, T.L.1    Wu, H.2    Sharpe, P.J.H.3
  • 36
    • 33747603206 scopus 로고    scopus 로고
    • Modelling global insect pest species assemblages to determine risk of invasion
    • Worner S.P., and Gevrey M. Modelling global insect pest species assemblages to determine risk of invasion. J. Appl. Ecol. 43 5 (2006) 858-867
    • (2006) J. Appl. Ecol. , vol.43 , Issue.5 , pp. 858-867
    • Worner, S.P.1    Gevrey, M.2
  • 37
    • 33846681532 scopus 로고    scopus 로고
    • Neural network modeling of ecosystems: a case study on cabbage growth system
    • Zhang W.J., Bai C.J., and Liu G.D. Neural network modeling of ecosystems: a case study on cabbage growth system. Ecol. Modell. 201 (2007) 317-325
    • (2007) Ecol. Modell. , vol.201 , pp. 317-325
    • Zhang, W.J.1    Bai, C.J.2    Liu, G.D.3
  • 38
    • 33750615221 scopus 로고    scopus 로고
    • Function approximation and documentation of sampling data using artificial neural networks
    • Zhang W.J., and Barrion A.T. Function approximation and documentation of sampling data using artificial neural networks. Environ. Monit. Assess. 122 (2006) 185-201
    • (2006) Environ. Monit. Assess. , vol.122 , pp. 185-201
    • Zhang, W.J.1    Barrion, A.T.2
  • 40
    • 33750628985 scopus 로고    scopus 로고
    • Functional link artificial neural network and agri-biodiversity analysis
    • Zhang W.J., and Qi Y.H. Functional link artificial neural network and agri-biodiversity analysis. Biodivers. Sci. 3 (2002) 345-350
    • (2002) Biodivers. Sci. , vol.3 , pp. 345-350
    • Zhang, W.J.1    Qi, Y.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.