메뉴 건너뛰기




Volumn 33, Issue 5, 1999, Pages 709-719

Neural network modelling and prediction of hourly NO(x) and NO2 concentrations in urban air in London

Author keywords

Air quality modelling; Artificial neural network; Multilayer perceptron; Nitrogen oxides; Primary pollutant

Indexed keywords

PRIMARY POLLUTANTS;

EID: 0033081112     PISSN: 13522310     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1352-2310(98)00230-1     Document Type: Article
Times cited : (354)

References (19)
  • 2
    • 0027610496 scopus 로고
    • 2 concentrations in highly polluted industrial areas of complex terrain
    • 2 concentrations in highly polluted industrial areas of complex terrain. Atmospheric Environment 27B (2), 221-230.
    • (1993) Atmospheric Environment , vol.27 B , Issue.2 , pp. 221-230
    • Boznar, M.1    Lesjak, M.2    Mlakar, P.3
  • 3
    • 0000818286 scopus 로고    scopus 로고
    • Air quality modelling: A technical review of mathematical approaches
    • Collet, R.S., Oduyemi, K., 1997. Air quality modelling: A technical review of mathematical approaches. Meteorological Applications 4, 235-246.
    • (1997) Meteorological Applications , vol.4 , pp. 235-246
    • Collet, R.S.1    Oduyemi, K.2
  • 4
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural network and regression models for ozone forecasting
    • Comrie, A.C., 1997. Comparing neural network and regression models for ozone forecasting. Journal of the Air and Waste Management Association 47, 653-663.
    • (1997) Journal of the Air and Waste Management Association , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 5
    • 0028990326 scopus 로고
    • Analysis and interpretation of air quality data from an urban roadside location in central london over the period from July 1991 to July 1992
    • Derwent, R.G., Middleton, D.R., Field, R.A., Goldstone, M.E., Lester, J.N., Perry, R., 1995. Analysis and interpretation of air quality data from an urban roadside location in central london over the period from July 1991 to July 1992. Atmospheric Environment 29 (8), 923-946.
    • (1995) Atmospheric Environment , vol.29 , Issue.8 , pp. 923-946
    • Derwent, R.G.1    Middleton, D.R.2    Field, R.A.3    Goldstone, M.E.4    Lester, J.N.5    Perry, R.6
  • 6
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences
    • Gardner, M.W., Dorling, S.R., 1998. Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences, Atmospheric Environment 32 (14/15), 2627-2636.
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 7
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcoombe, M., White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcoombe, M.2    White, H.3
  • 8
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks - a tutorial
    • Jain, A.K., Mao, J., Mohiuddin, K.M., 1996. Artificial neural networks - a tutorial. Computer, 31-44.
    • (1996) Computer , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 9
    • 0000759644 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M.F., 1991. A scaled conjugate gradient algorithm for fast supervised learning. IEEE Transactions on Systems. Man and Cybernetics 21, 272-280.
    • (1991) IEEE Transactions on Systems. Man and Cybernetics , vol.21 , pp. 272-280
    • Moller, M.F.1
  • 10
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M.F., 1993. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 12
    • 0003271452 scopus 로고
    • Stopped training and other remedies for over- fitting
    • Available via ftp: //ftp.sas.com/pub/neural/inter95.ps.Z.
    • Sarle, W.S., 1995. Stopped training and other remedies for over-fitting. Proceedings of the 27th Symposium on the Interface. Available via ftp: //ftp.sas.com/pub/neural/inter95.ps.Z.
    • (1995) Proceedings of the 27th Symposium on the Interface.
    • Sarle, W.S.1
  • 14
    • 0013530583 scopus 로고    scopus 로고
    • The development of a neural network model for forecasting UK air quality
    • Culham: AEA Technology, National Environmental Technology Centre.
    • Strachan, I., Stedman, J.R., 1997. The development of a neural network model for forecasting UK air quality, Technical Report, AEAT/2346/20008001/005, Culham: AEA Technology, National Environmental Technology Centre.
    • (1997) Technical Report, AEAT/2346/20008001/005
    • Strachan, I.1    Stedman, J.R.2
  • 15
    • 0030616161 scopus 로고    scopus 로고
    • Time scales of surface ozone variations in the regional, non-urban environment
    • Vukovich, F.M., 1997. Time scales of surface ozone variations in the regional, non-urban environment. Atmospheric EnvironMent 31 (10), 1513-1530.
    • (1997) Atmospheric Environment , vol.31 , Issue.10 , pp. 1513-1530
    • Vukovich, F.M.1
  • 17
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 63 (11), 1309-1313.
    • (1982) Bulletin of the American Meteorological Society , vol.63 , Issue.11 , pp. 1309-1313
    • Willmott, C.J.1
  • 19
    • 0028970823 scopus 로고
    • Forecasting peak pollutant levels from meteorological variables
    • Ziomass, I.C., Melas, D., Zerefos, C.S., Bais, A.F., 1995. Forecasting peak pollutant levels from meteorological variables, Atmospheric Environment 29 (24), 3703-3711.
    • (1995) Atmospheric Environment , vol.29 , Issue.24 , pp. 3703-3711
    • Ziomass, I.C.1    Melas, D.2    Zerefos, C.S.3    Bais, A.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.