-
1
-
-
0004020135
-
Mathematical techniques in multisensor data fusion
-
Artech House
-
D.L. Hall, Mathematical Techniques in Multisensor Data Fusion. Artech House, Inc., 1992.
-
(1992)
Inc.
-
-
Hall, D.L.1
-
2
-
-
19344369995
-
NIR and mass spectra classification: Bayesian methods for wavelet-based feature selection
-
Ma
-
M. Vannucci, N. Sha, and P.J. Brown, "NIR and Mass Spectra Classification: Bayesian Methods for Wavelet-Based Feature Selection," Chemometrics and Intelligent Laboratory Systems, vol.77, nos. 1/2, pp. 139-148, May 2005.
-
(2005)
Chemometrics and Intelligent Laboratory Systems
, vol.77
, Issue.1-2
, pp. 139-148
-
-
Vannucci, M.1
Sha, N.2
Brown, P.J.3
-
3
-
-
34147105536
-
Fast selection of spectral variables with b-spline compression
-
Apr
-
F. Rossi et al., "Fast Selection of Spectral Variables with B-Spline Compression," Chemometrics and Intelligent Laboratory Systems, Selected Papers Presented at the Chemometrics Congress, vol.86, no.2, pp. 208-218, Apr. 2007.
-
(2007)
Chemometrics and Intelligent Laboratory Systems, Selected Papers Presented at the Chemometrics Congress
, vol.86
, Issue.2
, pp. 208-218
-
-
Rossi, F.1
-
8
-
-
33745561205
-
An introduction to variable and feature selection
-
Mar
-
I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol.3, pp. 1157-1182, Mar. 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
9
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression Shrinkage and Selection via the Lasso," J. Royal Statistical Soc. Series B, vol.58, no.1, pp. 267-288, 1996.
-
(1996)
J. Royal Statistical Soc. Series B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
11
-
-
0141836275
-
Adaptive sparseness for supervised learn ing
-
Sept
-
M.A.T. Figueiredo, "Adaptive Sparseness for Supervised Learn ing," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.25, no.9, pp. 1150-1159, Sept. 2003.
-
(2003)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.25
, Issue.9
, pp. 1150-1159
-
-
Figueiredo, M.A.T.1
-
12
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
Mar
-
J. Weston et al., "Use of the Zero-Norm with Linear Models and Kernel Methods," J. Machine Learning Research, vol.3, pp. 1439-1461, Mar. 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
-
13
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
M.E. Tipping, "Sparse Bayesian Learning and the Relevance Vector Machine," J. Machine Learning Research, vol.1, no.3, pp. 211-244, 2001.
-
(2001)
J. Machine Learning Research
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
14
-
-
2442670435
-
Support vector channel selection in bci
-
Jun
-
T.N. Lal et al., "Support Vector Channel Selection in BCI," IEEE Trans. Biomedical Eng., vol.51, no.6, pp. 1003-1010, June 2004.
-
(2004)
IEEE Trans. Biomedical Eng.
, vol.51
, Issue.6
, pp. 1003-1010
-
-
Lal, T.N.1
-
15
-
-
33746126624
-
Blockwise sparse regression
-
Y. Kim, J. Kim, and Y. Kim, "Blockwise Sparse Regression," Statistica Sinica, vol.16, pp. 375-390, 2006.
-
(2006)
Statistica Sinica
, vol.16
, pp. 375-390
-
-
Kim, Y.1
Kim, J.2
Kim, Y.3
-
16
-
-
34548232392
-
Input selection and shrinkage in multiresponse linear regression
-
T. Similä and J. Tikka, "Input Selection and Shrinkage in Multiresponse Linear Regression," Computational Statistics and Data Analysis, vol.52, pp. 406-422, 2007.
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, pp. 406-422
-
-
Similä, T.1
Tikka, J.2
-
17
-
-
34547840186
-
Group scad regression analysis for microarray time course gene expression data
-
L. Wang, G. Chen, and H. Li, "Group SCAD Regression Analysis for Microarray Time Course Gene Expression Data," Bioinfor-matics, vol.23, no.12, pp. 1486-1494, 2007.
-
(2007)
Bioinfor-matics
, vol.23
, Issue.12
, pp. 1486-1494
-
-
Wang, L.1
Chen, G.2
Li, H.3
-
18
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y.B. Lin, "Model Selection and Estimation in Regression with Grouped Variables," J. Royal Statistical Soc., vol.68, pp. 49-67, 2006.
-
(2006)
J. Royal Statistical Soc.
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.B.2
-
19
-
-
34447335946
-
-
technical report, Univ. of California
-
P. Zhao, G. Rocha, and B. Yu, "Grouped and Hierarchical Model Selection through Composite Absolute Penalties," technical report, Univ. of California, 2006.
-
(2006)
Grouped and Hierarchical Model Selection Through Composite Absolute Penalties
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
20
-
-
34548551168
-
SVM feature selection for classification of spect images of alzheimer's disease using spatial information
-
J. Stoeckel and G. Fung, "SVM Feature Selection for Classification of SPECT Images of Alzheimer's Disease Using Spatial Information," Proc. Fifth IEEE Int'l Conf. Data Mining, pp. 410-417, 2005.
-
(2005)
Proc. Fifth IEEE Int'l Conf. Data Mining
, pp. 410-417
-
-
Stoeckel, J.1
Fung, G.2
-
21
-
-
23844477225
-
Sparse solutions to linear inverse problems with multiple measurement vectors
-
Jul
-
S.F. Cotter et al., "Sparse Solutions to Linear Inverse Problems with Multiple Measurement Vectors," IEEE Trans. Signal Processing, vol.53, no.7, pp. 2477-2488, July 2005.
-
(2005)
IEEE Trans. Signal Processing
, vol.53
, Issue.7
, pp. 2477-2488
-
-
Cotter, S.F.1
-
22
-
-
33947425580
-
Supervised group lasso with applications to microarray data analysis
-
S. Ma, X. Song, and J. Huang, "Supervised Group Lasso with Applications to Microarray Data Analysis," Bioinformatics, vol.8, no.60, 2007.
-
(2007)
Bioinformatics
, vol.8
, Issue.60
-
-
Ma, S.1
Song, X.2
Huang, J.3
-
24
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
GR.G Lanckriet et al., "Learning the Kernel Matrix with Semidefinite Programming," J. Machine Learning Research, vol.5, pp. 27-72, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
-
25
-
-
14344252374
-
Multiple kernel learning, conic duality, and the smo algorithm
-
F.R. Bach, GR.G Lanckriet, and M.I. Jordan, "Multiple Kernel Learning, Conic Duality, and the SMO Algorithm," Proc. 21st Int'l Conf. Machine Learning, pp. 41-48, 2004.
-
(2004)
Proc. 21st Int'l Conf. Machine Learning
, pp. 41-48
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
26
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg et al., "Large Scale Multiple Kernel Learning," J. Machine Learning Research, vol.7, pp. 1531-1565, 2006.
-
(2006)
J. Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
-
29
-
-
77950023906
-
Optimization transfer using surrogate objective functions
-
K. Lange, D. Hunter, and I. Yang, "Optimization Transfer Using Surrogate Objective Functions," J. Computational and Graphical Statistics, vol.9, pp. 1-59, 2000.
-
(2000)
J. Computational and Graphical Statistics
, vol.9
, pp. 1-59
-
-
Lange, K.1
Hunter, D.2
Yang, I.3
-
30
-
-
21244437589
-
Sparse multinomial logistic regression: Fast algorithms and generalization bounds
-
Jun
-
B. Krishnapuram et al., "Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.27, no.6, pp. 957-968, June 2005.
-
(2005)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 957-968
-
-
Krishnapuram, B.1
-
31
-
-
0038132749
-
A variational method for learning sparse and overcomplete representations
-
M. Girolami, "A Variational Method for Learning Sparse and Overcomplete Representations," Neural Computation, vol.13, no.11, pp. 2517-2532, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.11
, pp. 2517-2532
-
-
Girolami, M.1
-
32
-
-
14344260930
-
Surrogate maximization/ minimization algorithms for adaboost and the logistic regression model
-
Z. Zhang, J.T. Kwok, and D.-Y. Yeung, "Surrogate Maximization/ Minimization Algorithms for AdaBoost and the Logistic Regression Model," Proc. 21st Int'l Conf. Machine Learning, pp. 927-934, 2004.
-
(2004)
Proc. 21st Int'l Conf. Machine Learning
, pp. 927-934
-
-
Zhang, Z.1
Kwok, J.T.2
Yeung, D.-Y.3
-
33
-
-
57349174008
-
Enhancing sparsity by reweighted l1 minimization
-
E.J. Candes, M. Wakin, and S. Boyd, "Enhancing Sparsity by Reweighted l1 Minimization," J. Fourier Analysis and Applications, vol.14, pp. 877-905, 2007.
-
(2007)
J. Fourier Analysis and Applications
, vol.14
, pp. 877-905
-
-
Candes, E.J.1
Wakin, M.2
Boyd, S.3
-
34
-
-
34347400802
-
An empirical bayesian strategy for solving the simultaneous sparse approximation problem
-
Jul
-
D.P. Wipf and B.D. Rao, "An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem," IEEE Trans. Signal Processing, vol.55, no.7, pp. 3704-3716, July 2007.
-
(2007)
IEEE Trans. Signal Processing
, vol.55
, Issue.7
, pp. 3704-3716
-
-
Wipf, D.P.1
Rao, B.D.2
-
35
-
-
30044438683
-
Combined svm-based feature selection and classification
-
J. Neumann, C. Schnorr, and G Steidl, "Combined SVM-Based Feature Selection and Classification," Machine Learning, vol.61, nos. 1-3, pp. 129-150, 2005.
-
(2005)
Machine Learning
, vol.61
, Issue.1-3
, pp. 129-150
-
-
Neumann, J.1
Schnorr, C.2
Steidl, G.3
-
36
-
-
49749103098
-
Automated sensor selection and fusion for monitoring and diagnostics of plunge grinding
-
N. Subrahmanya and Y.C. Shin, "Automated Sensor Selection and Fusion for Monitoring and Diagnostics of Plunge Grinding," J. Manufacturing Science and Eng., Trans. ASME, vol.130, no.3, 031014, 2008.
-
(2008)
J. Manufacturing Science and Eng., Trans. ASME
, vol.130
, Issue.3
, pp. 031014
-
-
Subrahmanya, N.1
Shin, Y.C.2
-
37
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
M.I. Jordan, ed. Kluwe
-
R. Neal and G Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants," Learning in Graphical Models, M.I. Jordan, ed., Kluwer, 1998.
-
(1998)
Learning in Graphical Models
-
-
Neal, R.1
Hinton, G.2
-
38
-
-
4344667429
-
A bayesian approach to joint feature selection and classifier design
-
Sept
-
B. Krishnapuram et al., "A Bayesian Approach to Joint Feature Selection and Classifier Design," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.9, pp. 1105-1111, Sept. 2004.
-
(2004)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.26
, Issue.9
, pp. 1105-1111
-
-
Krishnapuram, B.1
-
39
-
-
0032638628
-
Least squares support vector machine classifiers
-
Jun
-
J.A.K. Suykens and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Processing Letters, vol.9, no.3, pp. 293-300, June 1999.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
40
-
-
0002714543
-
Making large-scale svm learning practical
-
Scholkopf, C. Burges, and A. Smola, eds., MIT-Press
-
T. Joachims, "Making Large-Scale SVM Learning Practical," Advances in Kernel Methods-Support Vector Learning: B. Scholkopf, C. Burges, and A. Smola, eds., MIT-Press, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning: B
-
-
Joachims, T.1
-
41
-
-
33745834241
-
-
Dept. of Information and Computer Science, Univ. of California, Irvine
-
D.J. Newman et al., UCI Repository of Machine Learning Databases, Dept. of Information and Computer Science, Univ. of California, Irvine, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Newman, D.J.1
-
42
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press
-
J. Platt, "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," Advances in Kernel Methods-Support Vector Learning, MIT Press, 1998.
-
(1998)
Advances in Kernel Methods-Support Vector Learning
-
-
Platt, J.1
-
43
-
-
0037116832
-
Use of proteomic patterns in serum to identify ovarian cancer
-
E.F. Petricoin et al., "Use of Proteomic Patterns in Serum to Identify Ovarian Cancer," Lancet, vol.359, pp. 572-577, 2002.
-
(2002)
Lancet
, vol.359
, pp. 572-577
-
-
Petricoin, E.F.1
-
44
-
-
1542406254
-
Ovarian cancer detection by logical analysis of proteomic data
-
G Alexe et al., "Ovarian Cancer Detection by Logical Analysis of Proteomic Data," Proteomics, vol.4, no.3, pp. 766-783, 2004.
-
(2004)
Proteomics
, vol.4
, Issue.3
, pp. 766-783
-
-
Alexe, G.1
-
45
-
-
31144448472
-
Composite kernels for hyperspectral image classification
-
Jan
-
G Camps-Valls et al., "Composite Kernels for Hyperspectral Image Classification," IEEE Geoscience and Remote Sensing Letters, vol.3, no.1, pp. 93-97, Jan. 2006.
-
(2006)
IEEE Geoscience and Remote Sensing Letters
, vol.3
, Issue.1
, pp. 93-97
-
-
Camps-Valls, G.1
|