메뉴 건너뛰기




Volumn 32, Issue 5, 2010, Pages 788-798

Sparse multiple kernel learning for signal processing applications

Author keywords

Composite kernel learning; Feature group selection; Heterogeneous data fusion; Sensor selection

Indexed keywords

CANCER DETECTION; COMPOSITE KERNELS; DUAL PROBLEM; EFFICIENT IMPLEMENTATION; FEATURE GROUPS; FEATURE SELECTION; FUSION SENSOR; HETEROGENEOUS DATA; HYPERSPECTRAL IMAGERY; INTERPRETABILITY; ITERATIVE LEARNING; KERNEL BASED METHODS; KERNEL SELECTION; KERNEL TRICK; KERNEL WEIGHT; LAND COVER CLASSIFICATION; LINEAR COMBINATIONS; LINEAR MODEL; MASS SPECTRA; MODEL DEVELOPMENT; MODEL PARAMETER ESTIMATION; MULTIPLE KERNEL LEARNING; NATURAL EXTENSION; NIR SPECTRUM; NON-LINEAR MODEL; PENALTY TERM; POSSIBLE SOLUTIONS; PRIMAL PROBLEM; SIGNAL PROCESSING APPLICATIONS; SINGLE KERNEL; SPARSE MULTIPLES;

EID: 77949784467     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2009.98     Document Type: Article
Times cited : (113)

References (45)
  • 1
    • 0004020135 scopus 로고
    • Mathematical techniques in multisensor data fusion
    • Artech House
    • D.L. Hall, Mathematical Techniques in Multisensor Data Fusion. Artech House, Inc., 1992.
    • (1992) Inc.
    • Hall, D.L.1
  • 2
    • 19344369995 scopus 로고    scopus 로고
    • NIR and mass spectra classification: Bayesian methods for wavelet-based feature selection
    • Ma
    • M. Vannucci, N. Sha, and P.J. Brown, "NIR and Mass Spectra Classification: Bayesian Methods for Wavelet-Based Feature Selection," Chemometrics and Intelligent Laboratory Systems, vol.77, nos. 1/2, pp. 139-148, May 2005.
    • (2005) Chemometrics and Intelligent Laboratory Systems , vol.77 , Issue.1-2 , pp. 139-148
    • Vannucci, M.1    Sha, N.2    Brown, P.J.3
  • 8
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol.3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 9
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression Shrinkage and Selection via the Lasso," J. Royal Statistical Soc. Series B, vol.58, no.1, pp. 267-288, 1996.
    • (1996) J. Royal Statistical Soc. Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 12
    • 84890520049 scopus 로고    scopus 로고
    • Use of the zero-norm with linear models and kernel methods
    • Mar
    • J. Weston et al., "Use of the Zero-Norm with Linear Models and Kernel Methods," J. Machine Learning Research, vol.3, pp. 1439-1461, Mar. 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1439-1461
    • Weston, J.1
  • 13
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • M.E. Tipping, "Sparse Bayesian Learning and the Relevance Vector Machine," J. Machine Learning Research, vol.1, no.3, pp. 211-244, 2001.
    • (2001) J. Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 14
    • 2442670435 scopus 로고    scopus 로고
    • Support vector channel selection in bci
    • Jun
    • T.N. Lal et al., "Support Vector Channel Selection in BCI," IEEE Trans. Biomedical Eng., vol.51, no.6, pp. 1003-1010, June 2004.
    • (2004) IEEE Trans. Biomedical Eng. , vol.51 , Issue.6 , pp. 1003-1010
    • Lal, T.N.1
  • 15
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Y. Kim, J. Kim, and Y. Kim, "Blockwise Sparse Regression," Statistica Sinica, vol.16, pp. 375-390, 2006.
    • (2006) Statistica Sinica , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 16
    • 34548232392 scopus 로고    scopus 로고
    • Input selection and shrinkage in multiresponse linear regression
    • T. Similä and J. Tikka, "Input Selection and Shrinkage in Multiresponse Linear Regression," Computational Statistics and Data Analysis, vol.52, pp. 406-422, 2007.
    • (2007) Computational Statistics and Data Analysis , vol.52 , pp. 406-422
    • Similä, T.1    Tikka, J.2
  • 17
    • 34547840186 scopus 로고    scopus 로고
    • Group scad regression analysis for microarray time course gene expression data
    • L. Wang, G. Chen, and H. Li, "Group SCAD Regression Analysis for Microarray Time Course Gene Expression Data," Bioinfor-matics, vol.23, no.12, pp. 1486-1494, 2007.
    • (2007) Bioinfor-matics , vol.23 , Issue.12 , pp. 1486-1494
    • Wang, L.1    Chen, G.2    Li, H.3
  • 18
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y.B. Lin, "Model Selection and Estimation in Regression with Grouped Variables," J. Royal Statistical Soc., vol.68, pp. 49-67, 2006.
    • (2006) J. Royal Statistical Soc. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.B.2
  • 20
    • 34548551168 scopus 로고    scopus 로고
    • SVM feature selection for classification of spect images of alzheimer's disease using spatial information
    • J. Stoeckel and G. Fung, "SVM Feature Selection for Classification of SPECT Images of Alzheimer's Disease Using Spatial Information," Proc. Fifth IEEE Int'l Conf. Data Mining, pp. 410-417, 2005.
    • (2005) Proc. Fifth IEEE Int'l Conf. Data Mining , pp. 410-417
    • Stoeckel, J.1    Fung, G.2
  • 21
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • Jul
    • S.F. Cotter et al., "Sparse Solutions to Linear Inverse Problems with Multiple Measurement Vectors," IEEE Trans. Signal Processing, vol.53, no.7, pp. 2477-2488, July 2005.
    • (2005) IEEE Trans. Signal Processing , vol.53 , Issue.7 , pp. 2477-2488
    • Cotter, S.F.1
  • 22
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group lasso with applications to microarray data analysis
    • S. Ma, X. Song, and J. Huang, "Supervised Group Lasso with Applications to Microarray Data Analysis," Bioinformatics, vol.8, no.60, 2007.
    • (2007) Bioinformatics , vol.8 , Issue.60
    • Ma, S.1    Song, X.2    Huang, J.3
  • 24
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with semidefinite programming
    • GR.G Lanckriet et al., "Learning the Kernel Matrix with Semidefinite Programming," J. Machine Learning Research, vol.5, pp. 27-72, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 27-72
    • Lanckriet, G.R.G.1
  • 26
    • 33745776113 scopus 로고    scopus 로고
    • Large scale multiple kernel learning
    • S. Sonnenburg et al., "Large Scale Multiple Kernel Learning," J. Machine Learning Research, vol.7, pp. 1531-1565, 2006.
    • (2006) J. Machine Learning Research , vol.7 , pp. 1531-1565
    • Sonnenburg, S.1
  • 30
    • 21244437589 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression: Fast algorithms and generalization bounds
    • Jun
    • B. Krishnapuram et al., "Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.27, no.6, pp. 957-968, June 2005.
    • (2005) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.27 , Issue.6 , pp. 957-968
    • Krishnapuram, B.1
  • 31
    • 0038132749 scopus 로고    scopus 로고
    • A variational method for learning sparse and overcomplete representations
    • M. Girolami, "A Variational Method for Learning Sparse and Overcomplete Representations," Neural Computation, vol.13, no.11, pp. 2517-2532, 2001.
    • (2001) Neural Computation , vol.13 , Issue.11 , pp. 2517-2532
    • Girolami, M.1
  • 32
    • 14344260930 scopus 로고    scopus 로고
    • Surrogate maximization/ minimization algorithms for adaboost and the logistic regression model
    • Z. Zhang, J.T. Kwok, and D.-Y. Yeung, "Surrogate Maximization/ Minimization Algorithms for AdaBoost and the Logistic Regression Model," Proc. 21st Int'l Conf. Machine Learning, pp. 927-934, 2004.
    • (2004) Proc. 21st Int'l Conf. Machine Learning , pp. 927-934
    • Zhang, Z.1    Kwok, J.T.2    Yeung, D.-Y.3
  • 34
    • 34347400802 scopus 로고    scopus 로고
    • An empirical bayesian strategy for solving the simultaneous sparse approximation problem
    • Jul
    • D.P. Wipf and B.D. Rao, "An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem," IEEE Trans. Signal Processing, vol.55, no.7, pp. 3704-3716, July 2007.
    • (2007) IEEE Trans. Signal Processing , vol.55 , Issue.7 , pp. 3704-3716
    • Wipf, D.P.1    Rao, B.D.2
  • 35
    • 30044438683 scopus 로고    scopus 로고
    • Combined svm-based feature selection and classification
    • J. Neumann, C. Schnorr, and G Steidl, "Combined SVM-Based Feature Selection and Classification," Machine Learning, vol.61, nos. 1-3, pp. 129-150, 2005.
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 36
    • 49749103098 scopus 로고    scopus 로고
    • Automated sensor selection and fusion for monitoring and diagnostics of plunge grinding
    • N. Subrahmanya and Y.C. Shin, "Automated Sensor Selection and Fusion for Monitoring and Diagnostics of Plunge Grinding," J. Manufacturing Science and Eng., Trans. ASME, vol.130, no.3, 031014, 2008.
    • (2008) J. Manufacturing Science and Eng., Trans. ASME , vol.130 , Issue.3 , pp. 031014
    • Subrahmanya, N.1    Shin, Y.C.2
  • 37
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M.I. Jordan, ed. Kluwe
    • R. Neal and G Hinton, "A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants," Learning in Graphical Models, M.I. Jordan, ed., Kluwer, 1998.
    • (1998) Learning in Graphical Models
    • Neal, R.1    Hinton, G.2
  • 38
    • 4344667429 scopus 로고    scopus 로고
    • A bayesian approach to joint feature selection and classifier design
    • Sept
    • B. Krishnapuram et al., "A Bayesian Approach to Joint Feature Selection and Classifier Design," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.9, pp. 1105-1111, Sept. 2004.
    • (2004) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.26 , Issue.9 , pp. 1105-1111
    • Krishnapuram, B.1
  • 39
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Jun
    • J.A.K. Suykens and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Processing Letters, vol.9, no.3, pp. 293-300, June 1999.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 40
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • Scholkopf, C. Burges, and A. Smola, eds., MIT-Press
    • T. Joachims, "Making Large-Scale SVM Learning Practical," Advances in Kernel Methods-Support Vector Learning: B. Scholkopf, C. Burges, and A. Smola, eds., MIT-Press, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning: B
    • Joachims, T.1
  • 41
    • 33745834241 scopus 로고    scopus 로고
    • Dept. of Information and Computer Science, Univ. of California, Irvine
    • D.J. Newman et al., UCI Repository of Machine Learning Databases, Dept. of Information and Computer Science, Univ. of California, Irvine, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Newman, D.J.1
  • 42
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • J. Platt, "Fast Training of Support Vector Machines Using Sequential Minimal Optimization," Advances in Kernel Methods-Support Vector Learning, MIT Press, 1998.
    • (1998) Advances in Kernel Methods-Support Vector Learning
    • Platt, J.1
  • 43
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • E.F. Petricoin et al., "Use of Proteomic Patterns in Serum to Identify Ovarian Cancer," Lancet, vol.359, pp. 572-577, 2002.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1
  • 44
    • 1542406254 scopus 로고    scopus 로고
    • Ovarian cancer detection by logical analysis of proteomic data
    • G Alexe et al., "Ovarian Cancer Detection by Logical Analysis of Proteomic Data," Proteomics, vol.4, no.3, pp. 766-783, 2004.
    • (2004) Proteomics , vol.4 , Issue.3 , pp. 766-783
    • Alexe, G.1
  • 45
    • 31144448472 scopus 로고    scopus 로고
    • Composite kernels for hyperspectral image classification
    • Jan
    • G Camps-Valls et al., "Composite Kernels for Hyperspectral Image Classification," IEEE Geoscience and Remote Sensing Letters, vol.3, no.1, pp. 93-97, Jan. 2006.
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.1 , pp. 93-97
    • Camps-Valls, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.