-
1
-
-
79952749920
-
Variable sparsity kernel learning
-
Aflalo J., Ben-Tal A., Bhattacharyya C., Nath J.S., Raman S. Variable sparsity kernel learning. Journal of Machine Learning Research 2011, 12:565-592.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 565-592
-
-
Aflalo, J.1
Ben-Tal, A.2
Bhattacharyya, C.3
Nath, J.S.4
Raman, S.5
-
3
-
-
84879577073
-
-
Multiple kernel learn g, conic duality and SMO algorithms. Proc. of the international conference on machine learning
-
Bach, F.R., Lanchriet, G.R.G., & Jordan, M.J. (2004). Multiple kernel learning, conic duality and SMO algorithms. In Proc. of the international conference on machine learning (pp. 6-13).
-
(2004)
, pp. 6-13
-
-
Bach, F.R.1
Lanchriet, G.R.G.2
Jordan, M.J.3
-
4
-
-
34247386378
-
Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares
-
Beck A., Ben-TaL A., Teboulle M. Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM Journal on Matrix Analysis and Applications 2006, 28:425-445.
-
(2006)
SIAM Journal on Matrix Analysis and Applications
, vol.28
, pp. 425-445
-
-
Beck, A.1
Ben-TaL, A.2
Teboulle, M.3
-
5
-
-
33750729556
-
Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
-
Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 2006, 7:2399-2434.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
6
-
-
33646509685
-
Fractional programming with convex quadratic forms and functions
-
Benson H.P. Fractional programming with convex quadratic forms and functions. European Journal of Operational Research 2006, 351-369.
-
(2006)
European Journal of Operational Research
, pp. 351-369
-
-
Benson, H.P.1
-
8
-
-
84879587551
-
-
UCI repository of mach e learn g databases. Available:
-
Blake, C., & Merz, C. (1999). UCI repository of machine learning databases. Available: http://archive.ics.uci.edu/ml.
-
(1999)
-
-
Blake, C.1
Merz, C.2
-
9
-
-
79955702502
-
A library for support vector machines
-
Software available at:
-
Chang C., Lin C. A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2011, 2(3):27:1-27:27. Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2011)
ACM Transactions on Intelligent Systems and Technology
, vol.2
, Issue.3
-
-
Chang, C.1
Lin, C.2
-
10
-
-
34247849152
-
Training a support vector machine in the primal
-
Chapelle O. Training a support vector machine in the primal. Neural Computation 2007, 19(5):1155-1178.
-
(2007)
Neural Computation
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
11
-
-
70349694498
-
Global optimization for a class of fractional programming problems
-
Fang S., Gao D., Shen R., Xing W. Global optimization for a class of fractional programming problems. Journal of Global Optimization 2009, 45:337-353.
-
(2009)
Journal of Global Optimization
, vol.45
, pp. 337-353
-
-
Fang, S.1
Gao, D.2
Shen, R.3
Xing, W.4
-
13
-
-
84862993024
-
Representative multiple kernel learning for classification in hyperspectral imagery
-
Gu Y., Wang C., You D., Zhang Y., Wang S., Zhang Y. Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 2012, 50(7):2852-2865.
-
(2012)
IEEE Transactions on Geoscience and Remote Sensing
, vol.50
, Issue.7
, pp. 2852-2865
-
-
Gu, Y.1
Wang, C.2
You, D.3
Zhang, Y.4
Wang, S.5
Zhang, Y.6
-
15
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMs
-
Decoste
-
Keerthi S.S., Decoste A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research 2005, 6(1):341-361.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.1
, pp. 341-361
-
-
Keerthi, S.S.1
-
16
-
-
79955848223
-
Lp-norm multiple kernel learning
-
(March)
-
Kloft M., Brefeld U., Sonnenburg S., Zien A. Lp-norm multiple kernel learning. Journal of Machine Learning Research 2011, 12:953-997. (March).
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 953-997
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Zien, A.4
-
17
-
-
8844278523
-
Learning the kernel matrix with semidefinte programming
-
Lanckriet G.R.G., Cristianini N., Bartlett P., Gaoui L.El., Jordan M.I. Learning the kernel matrix with semidefinte programming. Journal of Machine Learning Research 2004, 5:27-72.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Gaoui, L.4
Jordan, M.I.5
-
18
-
-
79958776165
-
Blockwise projection matrix versus blockwise data on undersampled problems: analysis, comparison and applications
-
Liang Z., Xia S., Zhou Y., Li Y. Blockwise projection matrix versus blockwise data on undersampled problems: analysis, comparison and applications. Pattern Recognition 2011, 44(10-11):2774-2785.
-
(2011)
Pattern Recognition
, vol.44
, Issue.10-11
, pp. 2774-2785
-
-
Liang, Z.1
Xia, S.2
Zhou, Y.3
Li, Y.4
-
19
-
-
0036817951
-
A finite Newton method for classification
-
Mangasrian O.L. A finite Newton method for classification. Optimization Methods and Software 2002, 17(5):913-929.
-
(2002)
Optimization Methods and Software
, vol.17
, Issue.5
, pp. 913-929
-
-
Mangasrian, O.L.1
-
20
-
-
79955855934
-
Laplacian support vector machines trained in the primal
-
Melacci S., Belkin M. Laplacian support vector machines trained in the primal. Journal of Machine Learning Research 2011, 12:1149-1184.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1149-1184
-
-
Melacci, S.1
Belkin, M.2
-
21
-
-
57249084590
-
SimpleMKL
-
Rakotommonjy A., Bach F.R., Canu S., Grandvalet Y. SimpleMKL. Journal of Machine Learning Research 2008, 9:1179-1225.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1179-1225
-
-
Rakotommonjy, A.1
Bach, F.R.2
Canu, S.3
Grandvalet, Y.4
-
22
-
-
84862283080
-
-
The rademacher complexity of co-regularized kernel classes, Proceed gs of artificial intelligence & statistics
-
Rosenberg, D., & Bartlett, P.L. (2007). The rademacher complexity of co-regularized kernel classes, In Proceedings of artificial intelligence & statistics (pp. 396-403).
-
(2007)
, pp. 396-403
-
-
Rosenberg, D.1
Bartlett, P.L.2
-
24
-
-
34547964973
-
-
Pegasos: primal estimated sub-gradient solver for SVM. Proceed gs of the international conference on machine learning
-
Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: primal estimated sub-gradient solver for SVM. In Proceedings of the international conference on machine learning (pp. 807-814).
-
(2007)
, pp. 807-814
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
26
-
-
56449131204
-
-
An RKHS for multi-view learn g and manifold regularization. Proceedings of the international conference on machine learning
-
Sindhwani, V., & Rosenberg, D.S. (2008). An RKHS for multi-view learning and manifold regularization. In Proceedings of the international conference on machine learning (pp. 976-983).
-
(2008)
, pp. 976-983
-
-
Sindhwani, V.1
Rosenberg, D.S.2
-
27
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg S., Ratsch G., Schafer C., Scholkopf B. Large scale multiple kernel learning. Journal of Machine Learning Research 2006, 7:1531-1565.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
28
-
-
0033296299
-
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
-
Sturm J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 1999, 11-12:625-653.
-
(1999)
Optimization Methods and Software
, pp. 625-653
-
-
Sturm, J.F.1
-
29
-
-
80053050350
-
SpicyMKL: a fast algorithm for multiple kernel learning with thousands of kernels
-
Suzuk T., Tomioka R. SpicyMKL: a fast algorithm for multiple kernel learning with thousands of kernels. Machine Learning 2011, 85(1):77-108.
-
(2011)
Machine Learning
, vol.85
, Issue.1
, pp. 77-108
-
-
Suzuk, T.1
Tomioka, R.2
-
31
-
-
61549114384
-
SVMs modeling for highly imbalanced classification
-
Tang Y., Zhang Y., Chawla N., Krasser S. SVMs modeling for highly imbalanced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 2009, 39(1):281-288.
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.2
Chawla, N.3
Krasser, S.4
-
32
-
-
85162016686
-
Multiple kernel learning and the SMO algorithm. In Proceedings of NIPS
-
Vishwanathan, S.V.N., Sun, Z., Ampornputn, N., & Varma, M. (2010). Multiple kernel learning and the SMO algorithm. In Proceedings of NIPS (pp. 2361-2369).
-
(2010)
, pp. 2361-2369
-
-
Vishwanathan, S.V.N.1
Sun, Z.2
Ampornputn, N.3
Varma, M.4
-
33
-
-
77956547440
-
-
Simple and efficient multiple kernel learn g by group Lasso. Proceedings of the 27th international conference on machine learning
-
Xu, Z., Jin, Rong, Ye, J., King, I., & Lyu, M. (2010). Simple and efficient multiple kernel learning by group Lasso. In Proceedings of the 27th international conference on machine learning (pp. 1175-1182).
-
(2010)
, pp. 1175-1182
-
-
Xu, Z.1
Jin, Rong.2
Ye, J.3
King, I.4
Lyu, M.5
-
34
-
-
77958602809
-
-
Smooth optimization for effective multiple kernel learn g. Proceedings of the 24th AAAI conference on artificial intelligence
-
Xu, Z., Jin, Rong, Zhu, S., Lyu, M., & King, I. (2010). Smooth optimization for effective multiple kernel learning. In Proceedings of the 24th AAAI conference on artificial intelligence (pp. 637-642).
-
(2010)
, pp. 637-642
-
-
Xu, Z.1
Jin2
Rong3
Zhu, S.4
Lyu, M.5
King, I.6
-
35
-
-
79952183228
-
Efficient sparse generalized multiple kernel learning
-
Yang H., Xu X., Ye J., King I., Lyu M. Efficient sparse generalized multiple kernel learning. IEEE Transactions on Neural Networks 2011, 22(3):433-446.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.3
, pp. 433-446
-
-
Yang, H.1
Xu, X.2
Ye, J.3
King, I.4
Lyu, M.5
-
36
-
-
77951160087
-
Quasi-Newton approach to nonsmooth convex optimization problems in machine learning
-
(March)
-
Yu J., Vishwanathan S.V.N., Güunter S., Schraudolph Nicol N. Quasi-Newton approach to nonsmooth convex optimization problems in machine learning. Journal of Machine Learning Research 2010, 11:1145-1200. (March).
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1145-1200
-
-
Yu, J.1
Vishwanathan, S.V.N.2
Güunter, S.3
Schraudolph, N.N.4
|