메뉴 건너뛰기




Volumn 46, Issue , 2013, Pages 172-182

Training Lp norm multiple kernel learning in the primal

Author keywords

Data classification; Empirical Rademacher complexity; Manifold regularization; Multiple kernel learning; Primal optimization

Indexed keywords

ALTERNATING OPTIMIZATIONS; DATA CLASSIFICATION; KERNEL WEIGHT; LEARNING THE KERNEL; MANIFOLD REGULARIZATIONS; MULTIPLE KERNEL LEARNING; PRECONDITIONED CONJUGATE GRADIENT METHOD; RADEMACHER COMPLEXITY;

EID: 84879556490     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.05.003     Document Type: Article
Times cited : (12)

References (36)
  • 3
    • 84879577073 scopus 로고    scopus 로고
    • Multiple kernel learn g, conic duality and SMO algorithms. Proc. of the international conference on machine learning
    • Bach, F.R., Lanchriet, G.R.G., & Jordan, M.J. (2004). Multiple kernel learning, conic duality and SMO algorithms. In Proc. of the international conference on machine learning (pp. 6-13).
    • (2004) , pp. 6-13
    • Bach, F.R.1    Lanchriet, G.R.G.2    Jordan, M.J.3
  • 4
    • 34247386378 scopus 로고    scopus 로고
    • Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares
    • Beck A., Ben-TaL A., Teboulle M. Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM Journal on Matrix Analysis and Applications 2006, 28:425-445.
    • (2006) SIAM Journal on Matrix Analysis and Applications , vol.28 , pp. 425-445
    • Beck, A.1    Ben-TaL, A.2    Teboulle, M.3
  • 5
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 2006, 7:2399-2434.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 6
    • 33646509685 scopus 로고    scopus 로고
    • Fractional programming with convex quadratic forms and functions
    • Benson H.P. Fractional programming with convex quadratic forms and functions. European Journal of Operational Research 2006, 351-369.
    • (2006) European Journal of Operational Research , pp. 351-369
    • Benson, H.P.1
  • 8
    • 84879587551 scopus 로고    scopus 로고
    • UCI repository of mach e learn g databases. Available:
    • Blake, C., & Merz, C. (1999). UCI repository of machine learning databases. Available: http://archive.ics.uci.edu/ml.
    • (1999)
    • Blake, C.1    Merz, C.2
  • 9
    • 79955702502 scopus 로고    scopus 로고
    • A library for support vector machines
    • Software available at:
    • Chang C., Lin C. A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2011, 2(3):27:1-27:27. Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) ACM Transactions on Intelligent Systems and Technology , vol.2 , Issue.3
    • Chang, C.1    Lin, C.2
  • 10
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • Chapelle O. Training a support vector machine in the primal. Neural Computation 2007, 19(5):1155-1178.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 11
    • 70349694498 scopus 로고    scopus 로고
    • Global optimization for a class of fractional programming problems
    • Fang S., Gao D., Shen R., Xing W. Global optimization for a class of fractional programming problems. Journal of Global Optimization 2009, 45:337-353.
    • (2009) Journal of Global Optimization , vol.45 , pp. 337-353
    • Fang, S.1    Gao, D.2    Shen, R.3    Xing, W.4
  • 15
    • 21844461582 scopus 로고    scopus 로고
    • A modified finite Newton method for fast solution of large scale linear SVMs
    • Decoste
    • Keerthi S.S., Decoste A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research 2005, 6(1):341-361.
    • (2005) Journal of Machine Learning Research , vol.6 , Issue.1 , pp. 341-361
    • Keerthi, S.S.1
  • 18
    • 79958776165 scopus 로고    scopus 로고
    • Blockwise projection matrix versus blockwise data on undersampled problems: analysis, comparison and applications
    • Liang Z., Xia S., Zhou Y., Li Y. Blockwise projection matrix versus blockwise data on undersampled problems: analysis, comparison and applications. Pattern Recognition 2011, 44(10-11):2774-2785.
    • (2011) Pattern Recognition , vol.44 , Issue.10-11 , pp. 2774-2785
    • Liang, Z.1    Xia, S.2    Zhou, Y.3    Li, Y.4
  • 19
    • 0036817951 scopus 로고    scopus 로고
    • A finite Newton method for classification
    • Mangasrian O.L. A finite Newton method for classification. Optimization Methods and Software 2002, 17(5):913-929.
    • (2002) Optimization Methods and Software , vol.17 , Issue.5 , pp. 913-929
    • Mangasrian, O.L.1
  • 20
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • Melacci S., Belkin M. Laplacian support vector machines trained in the primal. Journal of Machine Learning Research 2011, 12:1149-1184.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 22
    • 84862283080 scopus 로고    scopus 로고
    • The rademacher complexity of co-regularized kernel classes, Proceed gs of artificial intelligence & statistics
    • Rosenberg, D., & Bartlett, P.L. (2007). The rademacher complexity of co-regularized kernel classes, In Proceedings of artificial intelligence & statistics (pp. 396-403).
    • (2007) , pp. 396-403
    • Rosenberg, D.1    Bartlett, P.L.2
  • 24
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: primal estimated sub-gradient solver for SVM. Proceed gs of the international conference on machine learning
    • Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: primal estimated sub-gradient solver for SVM. In Proceedings of the international conference on machine learning (pp. 807-814).
    • (2007) , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 26
    • 56449131204 scopus 로고    scopus 로고
    • An RKHS for multi-view learn g and manifold regularization. Proceedings of the international conference on machine learning
    • Sindhwani, V., & Rosenberg, D.S. (2008). An RKHS for multi-view learning and manifold regularization. In Proceedings of the international conference on machine learning (pp. 976-983).
    • (2008) , pp. 976-983
    • Sindhwani, V.1    Rosenberg, D.S.2
  • 28
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • Sturm J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 1999, 11-12:625-653.
    • (1999) Optimization Methods and Software , pp. 625-653
    • Sturm, J.F.1
  • 29
    • 80053050350 scopus 로고    scopus 로고
    • SpicyMKL: a fast algorithm for multiple kernel learning with thousands of kernels
    • Suzuk T., Tomioka R. SpicyMKL: a fast algorithm for multiple kernel learning with thousands of kernels. Machine Learning 2011, 85(1):77-108.
    • (2011) Machine Learning , vol.85 , Issue.1 , pp. 77-108
    • Suzuk, T.1    Tomioka, R.2
  • 32
    • 85162016686 scopus 로고    scopus 로고
    • Multiple kernel learning and the SMO algorithm. In Proceedings of NIPS
    • Vishwanathan, S.V.N., Sun, Z., Ampornputn, N., & Varma, M. (2010). Multiple kernel learning and the SMO algorithm. In Proceedings of NIPS (pp. 2361-2369).
    • (2010) , pp. 2361-2369
    • Vishwanathan, S.V.N.1    Sun, Z.2    Ampornputn, N.3    Varma, M.4
  • 33
    • 77956547440 scopus 로고    scopus 로고
    • Simple and efficient multiple kernel learn g by group Lasso. Proceedings of the 27th international conference on machine learning
    • Xu, Z., Jin, Rong, Ye, J., King, I., & Lyu, M. (2010). Simple and efficient multiple kernel learning by group Lasso. In Proceedings of the 27th international conference on machine learning (pp. 1175-1182).
    • (2010) , pp. 1175-1182
    • Xu, Z.1    Jin, Rong.2    Ye, J.3    King, I.4    Lyu, M.5
  • 34
    • 77958602809 scopus 로고    scopus 로고
    • Smooth optimization for effective multiple kernel learn g. Proceedings of the 24th AAAI conference on artificial intelligence
    • Xu, Z., Jin, Rong, Zhu, S., Lyu, M., & King, I. (2010). Smooth optimization for effective multiple kernel learning. In Proceedings of the 24th AAAI conference on artificial intelligence (pp. 637-642).
    • (2010) , pp. 637-642
    • Xu, Z.1    Jin2    Rong3    Zhu, S.4    Lyu, M.5    King, I.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.