메뉴 건너뛰기




Volumn 165, Issue , 2015, Pages 46-53

A pre-selecting base kernel method in multiple kernel learning

Author keywords

Kernel selection; Kernel target alignment; Minimal redundancy maximal relevance; Multiple kernel learning

Indexed keywords

COMPUTER APPLICATIONS; NEURAL NETWORKS;

EID: 84929963662     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.06.094     Document Type: Article
Times cited : (11)

References (22)
  • 1
    • 43349094032 scopus 로고    scopus 로고
    • Probabilistic multi-class multi-kernel learning. on protein fold recognition and remote homology detection
    • Damoulas T., Girolami M.A. Probabilistic multi-class multi-kernel learning. on protein fold recognition and remote homology detection. Bioinformatics 2008, 24(10):1264-1270. 10.1093/bioinformatics/btn112.
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1264-1270
    • Damoulas, T.1    Girolami, M.A.2
  • 9
    • 84870238770 scopus 로고    scopus 로고
    • Localized algorithms for multiple kernel learning
    • Gönen M., Alpaydin E. Localized algorithms for multiple kernel learning. Pattern Recognit. 2013, 46:795-807.
    • (2013) Pattern Recognit. , vol.46 , pp. 795-807
    • Gönen, M.1    Alpaydin, E.2
  • 10
    • 84859463794 scopus 로고    scopus 로고
    • Algorithms for learning kernels based on centered alignment
    • Cortes C., Mohri M., Rostamizadeh A. Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 2012, 13:795-828.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 795-828
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 11
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • P. Gehler, S. Nowozin, On feature combination for multiclass object classification, in: IEEE International Conference on Computer Vision, 2009, pp. 221-228, . doi:10.1109/ICCV.2009.5459169.
    • (2009) IEEE International Conference on Computer Vision , pp. 221-228
    • Gehler, P.1    Nowozin, S.2
  • 12
    • 26944453996 scopus 로고    scopus 로고
    • Learning convex combinations of continuously parameterized basic kernels
    • Springer, Berlin
    • A. Argyriou, C.A. Micchelli, M. Pontil, Learning convex combinations of continuously parameterized basic kernels, in: Learning Theory, Springer, Berlin, 2005, pp. 338-352, . doi:10.1007/11503415_23.
    • (2005) Learning Theory , pp. 338-352
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3
  • 14
    • 84878684263 scopus 로고    scopus 로고
    • Alignment based kernel learning with a continuous set of base kernels
    • Afkanpour A., Szepesvári C., Bowling M. Alignment based kernel learning with a continuous set of base kernels. Mach. Learn. 2013, 91(3):305-324. 10.1007/s10994-013-5361-8.
    • (2013) Mach. Learn. , vol.91 , Issue.3 , pp. 305-324
    • Afkanpour, A.1    Szepesvári, C.2    Bowling, M.3
  • 15
    • 84878879337 scopus 로고    scopus 로고
    • Selective multiple kernel learning for classification with ensemble strategy
    • Sun T., Jiao L., Liu F., Wang S., Feng J. Selective multiple kernel learning for classification with ensemble strategy. Pattern Recognit. 2013, 46(11):3081-3090. 10.1016/j.patcog.2013.04.003.
    • (2013) Pattern Recognit. , vol.46 , Issue.11 , pp. 3081-3090
    • Sun, T.1    Jiao, L.2    Liu, F.3    Wang, S.4    Feng, J.5
  • 16
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C., Peng H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3(2):185-205. 10.1142/S0219720005001004.
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 17
    • 84929949092 scopus 로고    scopus 로고
    • SimpleMKL and LMKL codes: http://user.ics.aalto.fi/gonen/icml08.php.
  • 18
    • 77956611003 scopus 로고    scopus 로고
    • Mr2pso. a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
    • Unler A., Murat A., Chinnam R.B. Mr2pso. a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 2011, 181(20):4625-4641. 10.1016/j.ins.2010.05.037.
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4625-4641
    • Unler, A.1    Murat, A.2    Chinnam, R.B.3
  • 19
    • 80255123270 scopus 로고    scopus 로고
    • A feature selection method based on kernel canonical correlation analysis and the minimum redundancy-maximum relevance filter method
    • Sakar C.O., Kursun O., Gurgen F. A feature selection method based on kernel canonical correlation analysis and the minimum redundancy-maximum relevance filter method. Expert Syst. Appl. 2012, 39(3):3432-3437. 10.1016/j.eswa.2011.09.031.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.3 , pp. 3432-3437
    • Sakar, C.O.1    Kursun, O.2    Gurgen, F.3
  • 20
    • 0041995195 scopus 로고    scopus 로고
    • On kernel-target alignment
    • N. Cristianini, J. Shawe-Taylor, A. Elisseeff, et al., On kernel-target alignment, in: NIPS, 2001, pp. 367-373, doi: . doi:10.1007/3-540-33486-6_8.
    • (2001) NIPS , pp. 367-373
    • Cristianini, N.1    Shawe-Taylor, J.2    Elisseeff, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.