-
1
-
-
68249088215
-
Model selection for LS-SVM: application to handwriting recognition
-
Adankon M.M., Cheriet M. Model selection for LS-SVM: application to handwriting recognition. Pattern Recognition 2009, 42:3264-3270.
-
(2009)
Pattern Recognition
, vol.42
, pp. 3264-3270
-
-
Adankon, M.M.1
Cheriet, M.2
-
2
-
-
0001614864
-
The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm
-
Kluwer Academic Publishers, Norewll, USA, H. Frenk, C. Roos, T. Terlaky, S. Zhang (Eds.)
-
Andersen E.D., Andersen A.D. The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. High performancee optimization 2000, 197-232. Kluwer Academic Publishers, Norewll, USA. H. Frenk, C. Roos, T. Terlaky, S. Zhang (Eds.).
-
(2000)
High performancee optimization
, pp. 197-232
-
-
Andersen, E.D.1
Andersen, A.D.2
-
3
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
ACM, Banff, Canada, C.E. Brodley (Ed.)
-
Bach F.R., Lanckriet G.R.G., Jordan M.I. Multiple kernel learning, conic duality, and the SMO algorithm. Proceedings of the twenty-first international conference on machine learning 2004, 6-13. ACM, Banff, Canada. C.E. Brodley (Ed.).
-
(2004)
Proceedings of the twenty-first international conference on machine learning
, pp. 6-13
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
4
-
-
0003643027
-
-
Springer, New York, USA
-
Berg C., Christensen J., Ressel P. Harmonic analysis on semigroups: theory of positive definite and related functions 1984, Springer, New York, USA.
-
(1984)
Harmonic analysis on semigroups: theory of positive definite and related functions
-
-
Berg, C.1
Christensen, J.2
Ressel, P.3
-
5
-
-
0003408496
-
UCI repository of machine learning databases
-
University of California. Irvine.
-
Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. University of California. Irvine.
-
(1998)
-
-
Blake, C.L.1
Merz, C.J.2
-
7
-
-
34247558132
-
Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
-
Cawley G.C., Talbot L.C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research 2007, 8:841-861.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, L.C.2
-
8
-
-
73649104814
-
Kernel based support vector machine via semidefinite programming: application to medical diagnosis
-
Conforti D., Guido R. Kernel based support vector machine via semidefinite programming: application to medical diagnosis. Computers & Operations Research 2010, 37:1389-1394.
-
(2010)
Computers & Operations Research
, vol.37
, pp. 1389-1394
-
-
Conforti, D.1
Guido, R.2
-
9
-
-
0037382208
-
Evaluation of simple performancee measures for tuning SVM hyperparameters
-
Duan K., Keerthi S.S., Poo A.N. Evaluation of simple performancee measures for tuning SVM hyperparameters. Neurocomputing 2003, 51:41-59.
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
10
-
-
14344262828
-
A fast iterative algorithm for Fisher discriminant using heterogeneous kernels
-
ACM, Banff, Canada, C.E. Brodley (Ed.)
-
Fung G., Dundar M., Bi J., Rao B. A fast iterative algorithm for Fisher discriminant using heterogeneous kernels. Proceedings of the twenty-first international conference on machine learning 2004, 40-47. ACM, Banff, Canada. C.E. Brodley (Ed.).
-
(2004)
Proceedings of the twenty-first international conference on machine learning
, pp. 40-47
-
-
Fung, G.1
Dundar, M.2
Bi, J.3
Rao, B.4
-
12
-
-
59649118425
-
Application of least squares support vector machines to predict the silicon content in blast furnace hot metal
-
Jian L., Gao C.H., Li L., Zeng J.S. Application of least squares support vector machines to predict the silicon content in blast furnace hot metal. ISIJ International 2008, 48:1659-1661.
-
(2008)
ISIJ International
, vol.48
, pp. 1659-1661
-
-
Jian, L.1
Gao, C.H.2
Li, L.3
Zeng, J.S.4
-
13
-
-
33749246584
-
Optimal kernel selection in kernel Fisher discriminant analysis
-
ACM, Pittsburgh, USA, W.W. Cohen, A. Moore (Eds.)
-
Kim S.-J., Magnani A., Boyd S. Optimal kernel selection in kernel Fisher discriminant analysis. Proceedings of the twenty-third international conference on machine learning 2006, 465-472. ACM, Pittsburgh, USA. W.W. Cohen, A. Moore (Eds.).
-
(2006)
Proceedings of the twenty-third international conference on machine learning
, pp. 465-472
-
-
Kim, S.-J.1
Magnani, A.2
Boyd, S.3
-
14
-
-
8844263749
-
A statistical framework for genomic data fusion
-
Lanckriet G.R.G., Bie T.De., Cristianini N., Jordan M.I., Noble W.S. A statistical framework for genomic data fusion. Bioinformatics 2004, 20:2626-2635.
-
(2004)
Bioinformatics
, vol.20
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
15
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet G.R.G., Cristianini N., Bartlett P., Ghaoui L.E., Jordan M.I. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 2004, 5:27-72.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
16
-
-
0033983822
-
MIPS: a database for genomes and protein sequences
-
Mewes H.W., Frishman D., Gruber C., Geier B., Haase D., Kaps A., et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Research 2000, 28:37-40.
-
(2000)
Nucleic Acids Research
, vol.28
, pp. 37-40
-
-
Mewes, H.W.1
Frishman, D.2
Gruber, C.3
Geier, B.4
Haase, D.5
Kaps, A.6
-
17
-
-
40649092045
-
Low rank updated LS-SVM classifiers for fast variable selection
-
Ojeda F., Suykens J.A.K., De Moor B. Low rank updated LS-SVM classifiers for fast variable selection. Neural Networks 2008, 21:43-449.
-
(2008)
Neural Networks
, vol.21
, pp. 43-449
-
-
Ojeda, F.1
Suykens, J.A.K.2
De Moor, B.3
-
19
-
-
57249084590
-
SimpleMKL
-
Rakotomamonjy A., Bach F., Canu S., Grandvalet Y. SimpleMKL. Journal of Machine Learning Research 2008, 9:2491-2521.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
21
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg S., Räosch G., Schäer C., Schökopf B. Large scale multiple kernel learning. Journal of Machine Learning Research 2006, 7:1531-1565.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Räosch, G.2
Schäer, C.3
Schökopf, B.4
-
22
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters 1999, 9:293-300. URL: http://www.esat.kuleuven.be/sista/lssvmlab/.
-
(1999)
Neural Processing Letters
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
24
-
-
0033296299
-
Using SeDuMi 1.02 a MATLAB toolbox for optimization over symmetric cones
-
Sturm J.F. Using SeDuMi 1.02 a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 1999, 11-12:625-653.
-
(1999)
Optimization Methods and Software
, vol.11-12
, pp. 625-653
-
-
Sturm, J.F.1
-
25
-
-
33144470194
-
Efficient hyperkernel learning using second-order cone programming
-
Tsang I.W., Kwok J.T. Efficient hyperkernel learning using second-order cone programming. IEEE Transactions on Neural Networks 2006, 17:48-58.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, pp. 48-58
-
-
Tsang, I.W.1
Kwok, J.T.2
-
26
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen J., Dedene G., et al. Benchmarking least squares support vector machine classifiers. Machine Learning 2004, 54:5-32.
-
(2004)
Machine Learning
, vol.54
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
-
30
-
-
77954853785
-
L2-norm multiple kernel learning and its application to biomedical data fusion
-
Yu S., Falck T., Daemen A., Tranchevent L.C., Suykens J.A.K., De Moor B., Moreau Y. L2-norm multiple kernel learning and its application to biomedical data fusion. BMC Bioinformatics 2010, 11:1-53.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 1-53
-
-
Yu, S.1
Falck, T.2
Daemen, A.3
Tranchevent, L.C.4
Suykens, J.A.K.5
De Moor, B.6
Moreau, Y.7
|