메뉴 건너뛰기




Volumn 24, Issue 5, 2011, Pages 476-483

Design of a multiple kernel learning algorithm for LS-SVM by convex programming

Author keywords

Convex optimization; Least squares support vector machines; Multiple kernel learning; Quadratically constrained quadratic programming; Semidefinite programming

Indexed keywords

COMPUTATIONAL COSTS; CONSTRAINED QUADRATIC PROGRAMMING; CONVEX PROGRAMMING; CROSS VALIDATION; EXPERIMENTAL VALIDATIONS; KERNEL BASED METHODS; LEAST SQUARES SUPPORT VECTOR MACHINES; MODEL SELECTION; MULTIPLE KERNEL LEARNING; MULTIPLE KERNELS; REGULARIZATION PARAMETERS; SEMI-DEFINITE PROGRAMMING; SINGLE KERNEL; UNIFIED FRAMEWORK;

EID: 79953713204     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.03.009     Document Type: Article
Times cited : (40)

References (30)
  • 1
    • 68249088215 scopus 로고    scopus 로고
    • Model selection for LS-SVM: application to handwriting recognition
    • Adankon M.M., Cheriet M. Model selection for LS-SVM: application to handwriting recognition. Pattern Recognition 2009, 42:3264-3270.
    • (2009) Pattern Recognition , vol.42 , pp. 3264-3270
    • Adankon, M.M.1    Cheriet, M.2
  • 2
    • 0001614864 scopus 로고    scopus 로고
    • The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm
    • Kluwer Academic Publishers, Norewll, USA, H. Frenk, C. Roos, T. Terlaky, S. Zhang (Eds.)
    • Andersen E.D., Andersen A.D. The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. High performancee optimization 2000, 197-232. Kluwer Academic Publishers, Norewll, USA. H. Frenk, C. Roos, T. Terlaky, S. Zhang (Eds.).
    • (2000) High performancee optimization , pp. 197-232
    • Andersen, E.D.1    Andersen, A.D.2
  • 5
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • University of California. Irvine.
    • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. University of California. Irvine.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 7
    • 34247558132 scopus 로고    scopus 로고
    • Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters
    • Cawley G.C., Talbot L.C. Preventing over-fitting during model selection via Bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research 2007, 8:841-861.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, L.C.2
  • 8
    • 73649104814 scopus 로고    scopus 로고
    • Kernel based support vector machine via semidefinite programming: application to medical diagnosis
    • Conforti D., Guido R. Kernel based support vector machine via semidefinite programming: application to medical diagnosis. Computers & Operations Research 2010, 37:1389-1394.
    • (2010) Computers & Operations Research , vol.37 , pp. 1389-1394
    • Conforti, D.1    Guido, R.2
  • 9
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performancee measures for tuning SVM hyperparameters
    • Duan K., Keerthi S.S., Poo A.N. Evaluation of simple performancee measures for tuning SVM hyperparameters. Neurocomputing 2003, 51:41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 12
    • 59649118425 scopus 로고    scopus 로고
    • Application of least squares support vector machines to predict the silicon content in blast furnace hot metal
    • Jian L., Gao C.H., Li L., Zeng J.S. Application of least squares support vector machines to predict the silicon content in blast furnace hot metal. ISIJ International 2008, 48:1659-1661.
    • (2008) ISIJ International , vol.48 , pp. 1659-1661
    • Jian, L.1    Gao, C.H.2    Li, L.3    Zeng, J.S.4
  • 17
    • 40649092045 scopus 로고    scopus 로고
    • Low rank updated LS-SVM classifiers for fast variable selection
    • Ojeda F., Suykens J.A.K., De Moor B. Low rank updated LS-SVM classifiers for fast variable selection. Neural Networks 2008, 21:43-449.
    • (2008) Neural Networks , vol.21 , pp. 43-449
    • Ojeda, F.1    Suykens, J.A.K.2    De Moor, B.3
  • 22
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters 1999, 9:293-300. URL: http://www.esat.kuleuven.be/sista/lssvmlab/.
    • (1999) Neural Processing Letters , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 23
    • 0035181296 scopus 로고    scopus 로고
    • Optimal control by least squares support vector machines
    • Suykens J.A.K., Vandewalle J., De Moor B. Optimal control by least squares support vector machines. Neural Networks 2001, 14:23-35.
    • (2001) Neural Networks , vol.14 , pp. 23-35
    • Suykens, J.A.K.1    Vandewalle, J.2    De Moor, B.3
  • 24
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02 a MATLAB toolbox for optimization over symmetric cones
    • Sturm J.F. Using SeDuMi 1.02 a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 1999, 11-12:625-653.
    • (1999) Optimization Methods and Software , vol.11-12 , pp. 625-653
    • Sturm, J.F.1
  • 25
    • 33144470194 scopus 로고    scopus 로고
    • Efficient hyperkernel learning using second-order cone programming
    • Tsang I.W., Kwok J.T. Efficient hyperkernel learning using second-order cone programming. IEEE Transactions on Neural Networks 2006, 17:48-58.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 48-58
    • Tsang, I.W.1    Kwok, J.T.2
  • 27
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • Vandenberghe L., Boyd S. Semidefinite programming. SIAM Review 1996, 38:49-95.
    • (1996) SIAM Review , vol.38 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 29
    • 44649123652 scopus 로고    scopus 로고
    • Multi-class discriminant kernel learning via convex programming
    • Ye J.P., Ji S.W., Chen J.H. Multi-class discriminant kernel learning via convex programming. Journal of Machine Learning Research 2008, 9:719-758.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 719-758
    • Ye, J.P.1    Ji, S.W.2    Chen, J.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.