메뉴 건너뛰기




Volumn 41, Issue 6, 2016, Pages 491-507

RecA: Regulation and Mechanism of a Molecular Search Engine

Author keywords

F rster resonance energy transfer (FRET); Homology search; RAD51; Recombination; Self assembly; Single molecule imaging; Total internal reflection fluorescence (TIRF)

Indexed keywords

DOUBLE STRANDED DNA; RECA PROTEIN; RESTRICTION ENDONUCLEASE; SINGLE STRANDED DNA; TRANSCRIPTION FACTOR; ZINC FINGER PROTEIN; BACTERIAL DNA; BRCA2 PROTEIN; BRCA2 PROTEIN, HUMAN; ESCHERICHIA COLI PROTEIN; PROTEIN BINDING; RAD51 PROTEIN; RAD51 PROTEIN, HUMAN;

EID: 84964867536     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.04.002     Document Type: Review
Times cited : (161)

References (118)
  • 1
    • 33745874687 scopus 로고    scopus 로고
    • Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer
    • Lin Z., et al. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10328-10333.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10328-10333
    • Lin, Z.1
  • 2
    • 55449115425 scopus 로고    scopus 로고
    • Comparative and evolutionary analysis of the bacterial homologous recombination systems
    • Rocha E.P., et al. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet. 2005, 1:e15.
    • (2005) PLoS Genet. , vol.1 , pp. e15
    • Rocha, E.P.1
  • 3
    • 79952806659 scopus 로고    scopus 로고
    • Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees
    • Wu D., et al. Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLoS ONE 2011, 6:e18011.
    • (2011) PLoS ONE , vol.6 , pp. e18011
    • Wu, D.1
  • 4
    • 84875946720 scopus 로고    scopus 로고
    • Reevaluation of the evolutionary events within recA/RAD51 phylogeny
    • Chintapalli S.V., et al. Reevaluation of the evolutionary events within recA/RAD51 phylogeny. BMC Genomics 2013, 14:240.
    • (2013) BMC Genomics , vol.14 , pp. 240
    • Chintapalli, S.V.1
  • 5
    • 0001865832 scopus 로고    scopus 로고
    • DNA strand exchange proteins: a biochemical and physical comparison
    • Bianco P.R., et al. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 1998, 3:D570-D603.
    • (1998) Front. Biosci. , vol.3 , pp. D570-D603
    • Bianco, P.R.1
  • 7
    • 84961275699 scopus 로고    scopus 로고
    • Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli
    • Cooper D.L., Lovett S.T. Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli. eLife 2016, 5:e10807.
    • (2016) eLife , vol.5 , pp. e10807
    • Cooper, D.L.1    Lovett, S.T.2
  • 8
    • 84908445488 scopus 로고    scopus 로고
    • Mediators of homologous DNA pairing
    • Zelensky A., et al. Mediators of homologous DNA pairing. Cold Spring Harb. Perspect. Biol. 2014, 6:a016451.
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6 , pp. a016451
    • Zelensky, A.1
  • 9
    • 80855132890 scopus 로고    scopus 로고
    • Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
    • Liu J., et al. Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 2011, 479:245-248.
    • (2011) Nature , vol.479 , pp. 245-248
    • Liu, J.1
  • 10
    • 84926432359 scopus 로고    scopus 로고
    • Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins
    • Prakash R., et al. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 2015, 7:a016600.
    • (2015) Cold Spring Harb. Perspect. Biol. , vol.7 , pp. a016600
    • Prakash, R.1
  • 11
    • 84946423579 scopus 로고    scopus 로고
    • An overview of the molecular mechanisms of recombinational DNA repair
    • Kowalczykowski S.C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 2015, 7:a016410.
    • (2015) Cold Spring Harb. Perspect. Biol. , vol.7 , pp. a016410
    • Kowalczykowski, S.C.1
  • 12
    • 84974715499 scopus 로고    scopus 로고
    • Mechanics and single-molecule interrogation of DNA recombination
    • Published online April 18, 2016
    • Bell J.C., Kowalczykowski S.C. Mechanics and single-molecule interrogation of DNA recombination. Annu. Rev. Biochem. 2016, Published online April 18, 2016. 10.1146/annurev-biochem-060614-034352.
    • (2016) Annu. Rev. Biochem.
    • Bell, J.C.1    Kowalczykowski, S.C.2
  • 13
    • 84893945960 scopus 로고    scopus 로고
    • RecA bundles mediate homology pairing between distant sisters during DNA break repair
    • Lesterlin C., et al. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 2014, 506:249-253.
    • (2014) Nature , vol.506 , pp. 249-253
    • Lesterlin, C.1
  • 15
    • 84940540419 scopus 로고    scopus 로고
    • Quantitative genomic analysis of RecA protein binding during DNA double-strand break repair reveals RecBCD action in vivo
    • Cockram C.A., et al. Quantitative genomic analysis of RecA protein binding during DNA double-strand break repair reveals RecBCD action in vivo. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:E4735-E4742.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E4735-E4742
    • Cockram, C.A.1
  • 16
    • 84928473578 scopus 로고    scopus 로고
    • CRISPR adaptation biases explain preference for acquisition of foreign DNA
    • Levy A., et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 2015, 520:505-510.
    • (2015) Nature , vol.520 , pp. 505-510
    • Levy, A.1
  • 17
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 1997, 61:212-238.
    • (1997) Microbiol. Mol. Biol. Rev. , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 18
    • 84915746628 scopus 로고    scopus 로고
    • RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination
    • Morimatsu K., Kowalczykowski S.C. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E5133-E5142.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E5133-E5142
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 19
    • 66149130735 scopus 로고    scopus 로고
    • Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli
    • Handa N., et al. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev. 2009, 23:1234-1245.
    • (2009) Genes Dev. , vol.23 , pp. 1234-1245
    • Handa, N.1
  • 20
    • 0028034452 scopus 로고
    • Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein
    • Umezu K., Kolodner R.D. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 1994, 269:30005-30013.
    • (1994) J. Biol. Chem. , vol.269 , pp. 30005-30013
    • Umezu, K.1    Kolodner, R.D.2
  • 21
    • 0038392868 scopus 로고    scopus 로고
    • RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair
    • Morimatsu K., Kowalczykowski S.C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol. Cell 2003, 11:1337-1347.
    • (2003) Mol. Cell , vol.11 , pp. 1337-1347
    • Morimatsu, K.1    Kowalczykowski, S.C.2
  • 22
    • 84867406977 scopus 로고    scopus 로고
    • RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5' terminus: implication for repair of stalled replication forks
    • Morimatsu K., et al. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5' terminus: implication for repair of stalled replication forks. J. Biol. Chem. 2012, 287:35621-35630.
    • (2012) J. Biol. Chem. , vol.287 , pp. 35621-35630
    • Morimatsu, K.1
  • 23
    • 84949952959 scopus 로고    scopus 로고
    • Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function
    • Bell J.C., et al. Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. eLife 2015, 4:e08646.
    • (2015) eLife , vol.4 , pp. e08646
    • Bell, J.C.1
  • 24
    • 84868615392 scopus 로고    scopus 로고
    • Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA
    • Bell J.C., et al. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 2012, 491:274-278.
    • (2012) Nature , vol.491 , pp. 274-278
    • Bell, J.C.1
  • 25
    • 0000880652 scopus 로고
    • Isolation and characterization of recombination-deficient mutants of Escherichia coli K12
    • Clark A.J., Margulies A.D. Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. Natl. Acad. Sci. U.S.A. 1965, 53:451-459.
    • (1965) Proc. Natl. Acad. Sci. U.S.A. , vol.53 , pp. 451-459
    • Clark, A.J.1    Margulies, A.D.2
  • 26
    • 0028102267 scopus 로고
    • Biochemistry of homologous recombination in Escherichia coli
    • Kowalczykowski S.C., et al. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 1994, 58:401-465.
    • (1994) Microbiol. Rev. , vol.58 , pp. 401-465
    • Kowalczykowski, S.C.1
  • 27
    • 0017132755 scopus 로고
    • Identification and radiochemical purification of the recA protein of Escherichia coli K-12
    • McEntee K., et al. Identification and radiochemical purification of the recA protein of Escherichia coli K-12. Proc. Natl. Acad. Sci. U.S.A. 1976, 73:3979-3983.
    • (1976) Proc. Natl. Acad. Sci. U.S.A. , vol.73 , pp. 3979-3983
    • McEntee, K.1
  • 28
    • 0032715175 scopus 로고    scopus 로고
    • Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ
    • Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol. Mol. Biol. Rev. 1999, 63:751-813.
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 751-813
    • Kuzminov, A.1
  • 29
    • 0025891414 scopus 로고
    • Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange
    • Kowalczykowski S.C. Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu. Rev. Biophys. Biophys. Chem. 1991, 20:539-575.
    • (1991) Annu. Rev. Biophys. Biophys. Chem. , vol.20 , pp. 539-575
    • Kowalczykowski, S.C.1
  • 30
    • 44349162159 scopus 로고    scopus 로고
    • Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures
    • Chen Z., et al. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 2008, 453:489-494.
    • (2008) Nature , vol.453 , pp. 489-494
    • Chen, Z.1
  • 31
    • 0025166577 scopus 로고
    • Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis
    • Menetski J.P., et al. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc. Natl. Acad. Sci. U.S.A. 1990, 87:21-25.
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 21-25
    • Menetski, J.P.1
  • 32
    • 0026500416 scopus 로고
    • The structure of the E. coli recA protein monomer and polymer
    • Story R.M., et al. The structure of the E. coli recA protein monomer and polymer. Nature 1992, 355:318-325.
    • (1992) Nature , vol.355 , pp. 318-325
    • Story, R.M.1
  • 33
    • 0024339718 scopus 로고
    • The location of DNA in RecA-DNA helical filaments
    • Egelman E.H., Yu X. The location of DNA in RecA-DNA helical filaments. Science 1989, 245:404-407.
    • (1989) Science , vol.245 , pp. 404-407
    • Egelman, E.H.1    Yu, X.2
  • 34
    • 0022653980 scopus 로고
    • Structure and dynamics of recA protein-DNA complexes as determined by image analysis of electron micrographs
    • Stasiak A., Egelman E.H. Structure and dynamics of recA protein-DNA complexes as determined by image analysis of electron micrographs. Biophys. J. 1986, 49:5-7.
    • (1986) Biophys. J. , vol.49 , pp. 5-7
    • Stasiak, A.1    Egelman, E.H.2
  • 35
    • 0021646246 scopus 로고
    • Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments
    • Griffith J.D., et al. Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments. Cold Spring Harb. Symp. Quant. Biol. 1984, 49:553-559.
    • (1984) Cold Spring Harb. Symp. Quant. Biol. , vol.49 , pp. 553-559
    • Griffith, J.D.1
  • 36
    • 0023135142 scopus 로고
    • Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA
    • Kowalczykowski S.C., Krupp R.A. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J. Mol. Biol. 1987, 193:97-113.
    • (1987) J. Mol. Biol. , vol.193 , pp. 97-113
    • Kowalczykowski, S.C.1    Krupp, R.A.2
  • 37
    • 0033887437 scopus 로고    scopus 로고
    • Structure of the DNA binding domain of E. coli SSB bound to ssDNA
    • Raghunathan S., et al. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 2000, 7:648-652.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 648-652
    • Raghunathan, S.1
  • 38
    • 0023008741 scopus 로고
    • Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP
    • Egelman E.H., Stasiak A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP. J. Mol. Biol. 1986, 191:677-697.
    • (1986) J. Mol. Biol. , vol.191 , pp. 677-697
    • Egelman, E.H.1    Stasiak, A.2
  • 39
    • 0024843435 scopus 로고
    • Visualization of RecA protein and its complexes with DNA by quick-freeze/deep-etch electron microscopy
    • Heuser J., Griffith J. Visualization of RecA protein and its complexes with DNA by quick-freeze/deep-etch electron microscopy. J. Mol. Biol. 1989, 210:473-484.
    • (1989) J. Mol. Biol. , vol.210 , pp. 473-484
    • Heuser, J.1    Griffith, J.2
  • 40
    • 0024344179 scopus 로고
    • Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA142 protein
    • Kowalczykowski S.C., et al. Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA142 protein. J. Mol. Biol. 1989, 207:719-733.
    • (1989) J. Mol. Biol. , vol.207 , pp. 719-733
    • Kowalczykowski, S.C.1
  • 41
    • 0025848721 scopus 로고
    • Biochemical and biological function of Escherichia coli RecA protein: behavior of mutant RecA proteins
    • Kowalczykowski S.C. Biochemical and biological function of Escherichia coli RecA protein: behavior of mutant RecA proteins. Biochimie 1991, 73:289-304.
    • (1991) Biochimie , vol.73 , pp. 289-304
    • Kowalczykowski, S.C.1
  • 42
    • 0032514675 scopus 로고    scopus 로고
    • RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations
    • Léger J.F., et al. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:12295-12299.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 12295-12299
    • Léger, J.F.1
  • 43
    • 0033529216 scopus 로고    scopus 로고
    • RecA polymerization on double-stranded DNA by using single-molecule manipulation: the role of ATP hydrolysis
    • Shivashankar G.V., et al. RecA polymerization on double-stranded DNA by using single-molecule manipulation: the role of ATP hydrolysis. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:7916-7921.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 7916-7921
    • Shivashankar, G.V.1
  • 44
    • 0033621088 scopus 로고    scopus 로고
    • Polymerization and mechanical properties of single RecA-DNA filaments
    • Hegner M., et al. Polymerization and mechanical properties of single RecA-DNA filaments. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:10109-10114.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 10109-10114
    • Hegner, M.1
  • 45
    • 33746713745 scopus 로고    scopus 로고
    • Real-time observation of RecA filament dynamics with single monomer resolution
    • Joo C., et al. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 2006, 126:515-527.
    • (2006) Cell , vol.126 , pp. 515-527
    • Joo, C.1
  • 46
    • 33750296934 scopus 로고    scopus 로고
    • Direct observation of individual RecA filaments assembling on single DNA molecules
    • Galletto R., et al. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 2006, 443:875-878.
    • (2006) Nature , vol.443 , pp. 875-878
    • Galletto, R.1
  • 47
    • 77957023630 scopus 로고    scopus 로고
    • Watching individual proteins acting on single molecules of DNA
    • Amitani I., et al. Watching individual proteins acting on single molecules of DNA. Methods Enzymol. 2010, 472:261-291.
    • (2010) Methods Enzymol. , vol.472 , pp. 261-291
    • Amitani, I.1
  • 48
    • 67650567353 scopus 로고    scopus 로고
    • Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions
    • Handa N., et al. Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions. J. Biol. Chem. 2009, 284:18664-18673.
    • (2009) J. Biol. Chem. , vol.284 , pp. 18664-18673
    • Handa, N.1
  • 49
    • 77956311483 scopus 로고    scopus 로고
    • Osmolytes contribute to pH homeostasis of Escherichia coli
    • Kitko R.D., et al. Osmolytes contribute to pH homeostasis of Escherichia coli. PLoS ONE 2010, 5:e10078.
    • (2010) PLoS ONE , vol.5 , pp. e10078
    • Kitko, R.D.1
  • 50
    • 34547634728 scopus 로고    scopus 로고
    • PH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry
    • Wilks J.C., Slonczewski J.L. pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry. J. Bacteriol. 2007, 189:5601-5607.
    • (2007) J. Bacteriol. , vol.189 , pp. 5601-5607
    • Wilks, J.C.1    Slonczewski, J.L.2
  • 51
    • 0019456997 scopus 로고
    • Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents
    • Repaske D.R., Adler J. Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J. Bacteriol. 1981, 145:1196-1208.
    • (1981) J. Bacteriol. , vol.145 , pp. 1196-1208
    • Repaske, D.R.1    Adler, J.2
  • 52
    • 0028363850 scopus 로고
    • Control of the LexA regulon by pH: evidence for a reversible inactivation of the LexA repressor during the growth cycle of Escherichia coli
    • Dri A.M., Moreau P.L. Control of the LexA regulon by pH: evidence for a reversible inactivation of the LexA repressor during the growth cycle of Escherichia coli. Mol. Microbiol. 1994, 12:621-629.
    • (1994) Mol. Microbiol. , vol.12 , pp. 621-629
    • Dri, A.M.1    Moreau, P.L.2
  • 53
    • 0032822925 scopus 로고    scopus 로고
    • Enhanced monomer-monomer interactions can suppress the recombination deficiency of the recA142 allele
    • Zaitsev E.N., Kowalczykowski S.C. Enhanced monomer-monomer interactions can suppress the recombination deficiency of the recA142 allele. Mol. Microbiol. 1999, 34:1-9.
    • (1999) Mol. Microbiol. , vol.34 , pp. 1-9
    • Zaitsev, E.N.1    Kowalczykowski, S.C.2
  • 54
    • 11144263144 scopus 로고    scopus 로고
    • PH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12
    • Maurer L.M., et al. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 2005, 187:304-319.
    • (2005) J. Bacteriol. , vol.187 , pp. 304-319
    • Maurer, L.M.1
  • 55
    • 84921930869 scopus 로고    scopus 로고
    • Dynamic growth and shrinkage govern the pH dependence of RecA filament stability
    • Kim S.H., et al. Dynamic growth and shrinkage govern the pH dependence of RecA filament stability. PLoS ONE 2015, 10:e0115611.
    • (2015) PLoS ONE , vol.10 , pp. e0115611
    • Kim, S.H.1
  • 56
    • 0024378045 scopus 로고
    • Enhancement of Escherichia coli recA protein enzymatic function by dATP
    • Menetski J.P., Kowalczykowski S.C. Enhancement of Escherichia coli recA protein enzymatic function by dATP. Biochemistry 1989, 28:5871-5881.
    • (1989) Biochemistry , vol.28 , pp. 5871-5881
    • Menetski, J.P.1    Kowalczykowski, S.C.2
  • 57
    • 0022518308 scopus 로고
    • ATP hydrolysis during SOS induction in Escherichia coli
    • Barbe J., et al. ATP hydrolysis during SOS induction in Escherichia coli. J. Bacteriol. 1986, 167:1055-1057.
    • (1986) J. Bacteriol. , vol.167 , pp. 1055-1057
    • Barbe, J.1
  • 58
    • 84860517399 scopus 로고    scopus 로고
    • Increased chromosome mobility facilitates homology search during recombination
    • Miné-Hattab J., Rothstein R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 2012, 14:510-517.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 510-517
    • Miné-Hattab, J.1    Rothstein, R.2
  • 59
    • 84860500314 scopus 로고    scopus 로고
    • Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery
    • Dion V., et al. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 2012, 14:502-509.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 502-509
    • Dion, V.1
  • 60
    • 0029762349 scopus 로고    scopus 로고
    • The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange
    • Mazin A.V., Kowalczykowski S.C. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:10673-10678.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 10673-10678
    • Mazin, A.V.1    Kowalczykowski, S.C.2
  • 61
    • 0026740399 scopus 로고
    • The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA
    • Hsieh P., et al. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:6492-6496.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 6492-6496
    • Hsieh, P.1
  • 62
    • 0022646708 scopus 로고
    • On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli
    • Julin D.A., et al. On the mechanism of pairing of single- and double-stranded DNA molecules by the recA and single-stranded DNA-binding proteins of Escherichia coli. J. Biol. Chem. 1986, 261:1025-1030.
    • (1986) J. Biol. Chem. , vol.261 , pp. 1025-1030
    • Julin, D.A.1
  • 63
    • 0020823126 scopus 로고
    • By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology
    • Gonda D.K., Radding C.M. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell 1983, 34:647-654.
    • (1983) Cell , vol.34 , pp. 647-654
    • Gonda, D.K.1    Radding, C.M.2
  • 64
    • 0022881276 scopus 로고
    • The mechanism of the search for homology promoted by recA protein. Facilitated diffusion within nucleoprotein networks
    • Gonda D.K., Radding C.M. The mechanism of the search for homology promoted by recA protein. Facilitated diffusion within nucleoprotein networks. J. Biol. Chem. 1986, 261:13087-13096.
    • (1986) J. Biol. Chem. , vol.261 , pp. 13087-13096
    • Gonda, D.K.1    Radding, C.M.2
  • 65
    • 0032553529 scopus 로고    scopus 로고
    • No sliding during homology search by RecA protein
    • Adzuma K. No sliding during homology search by RecA protein. J. Biol. Chem. 1998, 273:31565-31573.
    • (1998) J. Biol. Chem. , vol.273 , pp. 31565-31573
    • Adzuma, K.1
  • 66
    • 0002433423 scopus 로고
    • How do genome-regulatory proteins locate their DNA target sites?
    • Berg O.G., et al. How do genome-regulatory proteins locate their DNA target sites?. Trends Biochem. Sci. 1982, 7:52-55.
    • (1982) Trends Biochem. Sci. , vol.7 , pp. 52-55
    • Berg, O.G.1
  • 67
    • 33748523075 scopus 로고    scopus 로고
    • Recognizing DNA
    • Lavery R. Recognizing DNA. Q. Rev. Biophys 2005, 38:339-344.
    • (2005) Q. Rev. Biophys , vol.38 , pp. 339-344
    • Lavery, R.1
  • 68
    • 0002304026 scopus 로고
    • Some thermodynamic principles of nonspecific and site-specific protein-DNA interactions
    • CRC Press, A. Revzin (Ed.)
    • Record M.T.J., Spolar R.S. Some thermodynamic principles of nonspecific and site-specific protein-DNA interactions. In The Biology of Nonspecific DNA Protein Interactions 1990, 33-69. CRC Press. A. Revzin (Ed.).
    • (1990) In The Biology of Nonspecific DNA Protein Interactions , pp. 33-69
    • Record, M.T.J.1    Spolar, R.S.2
  • 69
    • 0025330003 scopus 로고
    • Lambda repressor: a model system for understanding protein-DNA interactions and protein stability
    • Sauer R.T., et al. Lambda repressor: a model system for understanding protein-DNA interactions and protein stability. Adv. Protein Chem. 1990, 40:1-61.
    • (1990) Adv. Protein Chem. , vol.40 , pp. 1-61
    • Sauer, R.T.1
  • 70
    • 0004237841 scopus 로고
    • The role of nonspecific interactions for gene-regulatory proteins in their search for specific target sites
    • CRC Press, A. Revzin (Ed.)
    • Berg O.G. The role of nonspecific interactions for gene-regulatory proteins in their search for specific target sites. In The Biology of Nonspecific DNA Protein Interactions 1990, 71-85. CRC Press. A. Revzin (Ed.).
    • (1990) In The Biology of Nonspecific DNA Protein Interactions , pp. 71-85
    • Berg, O.G.1
  • 71
    • 0024531901 scopus 로고
    • Facilitated target location in biological systems
    • von Hippel P.H., Berg O.G. Facilitated target location in biological systems. J. Biol. Chem. 1989, 264:675-678.
    • (1989) J. Biol. Chem. , vol.264 , pp. 675-678
    • von Hippel, P.H.1    Berg, O.G.2
  • 72
    • 0019887628 scopus 로고
    • Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory
    • Berg O.G., et al. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 1981, 20:6929-6948.
    • (1981) Biochemistry , vol.20 , pp. 6929-6948
    • Berg, O.G.1
  • 73
    • 0019867850 scopus 로고
    • Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: kinetic measurements and conclusions
    • Winter R.B., et al. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: kinetic measurements and conclusions. Biochemistry 1981, 20:6961-6977.
    • (1981) Biochemistry , vol.20 , pp. 6961-6977
    • Winter, R.B.1
  • 74
    • 0019816896 scopus 로고
    • Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor-operator interaction: equilibrium measurements
    • Winter R.B., von Hippel P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor-operator interaction: equilibrium measurements. Biochemistry 1981, 20:6948-6960.
    • (1981) Biochemistry , vol.20 , pp. 6948-6960
    • Winter, R.B.1    von Hippel, P.H.2
  • 76
    • 84871006430 scopus 로고    scopus 로고
    • Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions
    • Hadizadeh Yazdi N., et al. Variation of the folding and dynamics of the Escherichia coli chromosome with growth conditions. Mol. Microbiol. 2012, 86:1318-1333.
    • (2012) Mol. Microbiol. , vol.86 , pp. 1318-1333
    • Hadizadeh Yazdi, N.1
  • 78
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 79
    • 3042579602 scopus 로고    scopus 로고
    • How do site-specific DNA-binding proteins find their targets?
    • Halford S.E., Marko J.F. How do site-specific DNA-binding proteins find their targets?. Nucleic Acids Res. 2004, 32:3040-3052.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 3040-3052
    • Halford, S.E.1    Marko, J.F.2
  • 80
    • 0030024985 scopus 로고    scopus 로고
    • Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules
    • Smith S.B., et al. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 1996, 271:795-799.
    • (1996) Science , vol.271 , pp. 795-799
    • Smith, S.B.1
  • 81
    • 0030947539 scopus 로고    scopus 로고
    • Ionic effects on the elasticity of single DNA molecules
    • Baumann C.G., et al. Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:6185-6190.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 6185-6190
    • Baumann, C.G.1
  • 82
    • 1942423138 scopus 로고    scopus 로고
    • Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy
    • Murphy M.C., et al. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 2004, 86:2530-2537.
    • (2004) Biophys. J. , vol.86 , pp. 2530-2537
    • Murphy, M.C.1
  • 83
    • 61349185799 scopus 로고    scopus 로고
    • Nonlinear low-force elasticity of single-stranded DNA molecules
    • Saleh O.A., et al. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 2009, 102:068301.
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 068301
    • Saleh, O.A.1
  • 84
    • 0346660225 scopus 로고
    • Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli
    • McEntee K., et al. Initiation of general recombination catalyzed in vitro by the recA protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1979, 76:2615-2619.
    • (1979) Proc. Natl. Acad. Sci. U.S.A. , vol.76 , pp. 2615-2619
    • McEntee, K.1
  • 85
    • 0000133316 scopus 로고
    • Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments
    • Shibata T., et al. Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc. Natl. Acad. Sci. U.S.A. 1979, 76:1638-1642.
    • (1979) Proc. Natl. Acad. Sci. U.S.A. , vol.76 , pp. 1638-1642
    • Shibata, T.1
  • 86
    • 84857118715 scopus 로고    scopus 로고
    • Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search
    • Forget A.L., Kowalczykowski S.C. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 2012, 482:423-427.
    • (2012) Nature , vol.482 , pp. 423-427
    • Forget, A.L.1    Kowalczykowski, S.C.2
  • 87
    • 84875192701 scopus 로고    scopus 로고
    • Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy
    • Forget A.L., et al. Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nat. Protoc. 2013, 8:525-538.
    • (2013) Nat. Protoc. , vol.8 , pp. 525-538
    • Forget, A.L.1
  • 88
    • 80051527439 scopus 로고    scopus 로고
    • Real-time observation of strand exchange reaction with high spatiotemporal resolution
    • Ragunathan K., et al. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 2011, 19:1064-1073.
    • (2011) Structure , vol.19 , pp. 1064-1073
    • Ragunathan, K.1
  • 89
    • 84881494657 scopus 로고    scopus 로고
    • RecA filament sliding on DNA facilitates homology search
    • Ragunathan K., et al. RecA filament sliding on DNA facilitates homology search. eLife 2012, 1:e00067.
    • (2012) eLife , vol.1 , pp. e00067
    • Ragunathan, K.1
  • 90
    • 84861978524 scopus 로고    scopus 로고
    • Mechanism of homology recognition in DNA recombination from dual-molecule experiments
    • De Vlaminck I., et al. Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol. Cell 2012, 46:616-624.
    • (2012) Mol. Cell , vol.46 , pp. 616-624
    • De Vlaminck, I.1
  • 91
    • 84948582953 scopus 로고    scopus 로고
    • Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure
    • Yang D., et al. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure. Nucleic Acids Res. 2015, 43:10251-10263.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 10251-10263
    • Yang, D.1
  • 92
    • 84948582204 scopus 로고    scopus 로고
    • Structure/function relationships in RecA protein-mediated homology recognition and strand exchange
    • Prentiss M., et al. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit. Rev. Biochem. Mol. Biol. 2015, 50:453-476.
    • (2015) Crit. Rev. Biochem. Mol. Biol. , vol.50 , pp. 453-476
    • Prentiss, M.1
  • 93
    • 84939611075 scopus 로고    scopus 로고
    • RecA-mediated sequence homology recognition as an example of how searching speed in self-assembly systems can be optimized by balancing entropic and enthalpic barriers
    • Jiang L., Prentiss M. RecA-mediated sequence homology recognition as an example of how searching speed in self-assembly systems can be optimized by balancing entropic and enthalpic barriers. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2014, 90:022704.
    • (2014) Phys. Rev. E Stat. Nonlin. Soft Matter Phys. , vol.90 , pp. 022704
    • Jiang, L.1    Prentiss, M.2
  • 94
    • 84923369935 scopus 로고    scopus 로고
    • DNA sequence alignment by microhomology sampling during homologous recombination
    • Qi Z., et al. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 2015, 160:856-869.
    • (2015) Cell , vol.160 , pp. 856-869
    • Qi, Z.1
  • 95
    • 84940553739 scopus 로고    scopus 로고
    • DNA recombination. Base triplet stepping by the Rad51/RecA family of recombinases
    • Lee J.Y., et al. DNA recombination. Base triplet stepping by the Rad51/RecA family of recombinases. Science 2015, 349:977-981.
    • (2015) Science , vol.349 , pp. 977-981
    • Lee, J.Y.1
  • 96
    • 84886751857 scopus 로고    scopus 로고
    • DNA in motion during double-strand break repair
    • Miné-Hattab J., Rothstein R. DNA in motion during double-strand break repair. Trends Cell Biol. 2013, 23:529-536.
    • (2013) Trends Cell Biol. , vol.23 , pp. 529-536
    • Miné-Hattab, J.1    Rothstein, R.2
  • 97
    • 84907482360 scopus 로고    scopus 로고
    • Interchromosomal homology searches drive directional ALT telomere movement and synapsis
    • Cho N.W., et al. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 2014, 159:108-121.
    • (2014) Cell , vol.159 , pp. 108-121
    • Cho, N.W.1
  • 98
    • 84887064569 scopus 로고    scopus 로고
    • Cohesin and the nucleolus constrain the mobility of spontaneous repair foci
    • Dion V., et al. Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep. 2013, 14:984-991.
    • (2013) EMBO Rep. , vol.14 , pp. 984-991
    • Dion, V.1
  • 99
    • 84875207723 scopus 로고    scopus 로고
    • Chromatin movement in the maintenance of genome stability
    • Dion V., Gasser S.M. Chromatin movement in the maintenance of genome stability. Cell 2013, 152:1355-1364.
    • (2013) Cell , vol.152 , pp. 1355-1364
    • Dion, V.1    Gasser, S.M.2
  • 100
    • 84954477354 scopus 로고    scopus 로고
    • Chromosome position determines the success of double-strand break repair
    • Lee C.S., et al. Chromosome position determines the success of double-strand break repair. Proc. Natl. Acad. Sci. U.S.A. 2016, 113:E146-E154.
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. E146-E154
    • Lee, C.S.1
  • 101
  • 102
    • 84959188383 scopus 로고    scopus 로고
    • DNA damage signalling targets the kinetochore to promote chromatin mobility
    • Strecker J., et al. DNA damage signalling targets the kinetochore to promote chromatin mobility. Nat. Cell Biol. 2016, 18:281-290.
    • (2016) Nat. Cell Biol. , vol.18 , pp. 281-290
    • Strecker, J.1
  • 103
    • 0022888115 scopus 로고
    • Determination of bacterial cell volume with the Coulter Counter
    • Kubitschek H.E., Friske J.A. Determination of bacterial cell volume with the Coulter Counter. J. Bacteriol. 1986, 168:1466-1467.
    • (1986) J. Bacteriol. , vol.168 , pp. 1466-1467
    • Kubitschek, H.E.1    Friske, J.A.2
  • 104
    • 15444350252 scopus 로고    scopus 로고
    • The complete genome sequence of Escherichia coli K-12
    • Blattner F.R., et al. The complete genome sequence of Escherichia coli K-12. Science 1997, 277:1453-1462.
    • (1997) Science , vol.277 , pp. 1453-1462
    • Blattner, F.R.1
  • 105
    • 77951537332 scopus 로고    scopus 로고
    • Stoichiometry and architecture of active DNA replication machinery in Escherichia coli
    • Reyes-Lamothe R., et al. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 2010, 328:498-501.
    • (2010) Science , vol.328 , pp. 498-501
    • Reyes-Lamothe, R.1
  • 107
    • 0014982055 scopus 로고
    • Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions
    • Iyer V.N., Rupp W.D. Usefulness of benzoylated naphthoylated DEAE-cellulose to distinguish and fractionate double-stranded DNA bearing different extents of single-stranded regions. Biochim. Biophys. Acta 1971, 228:117-126.
    • (1971) Biochim. Biophys. Acta , vol.228 , pp. 117-126
    • Iyer, V.N.1    Rupp, W.D.2
  • 108
    • 0026664596 scopus 로고
    • Similar-sized daughter-strand gaps are produced in the leading and lagging strands of DNA in UV-irradiated E. coli uvrA cells
    • Wang T.C., Chen S.H. Similar-sized daughter-strand gaps are produced in the leading and lagging strands of DNA in UV-irradiated E. coli uvrA cells. Biochem. Biophys. Res. Commun. 1992, 184:1496-1503.
    • (1992) Biochem. Biophys. Res. Commun. , vol.184 , pp. 1496-1503
    • Wang, T.C.1    Chen, S.H.2
  • 109
    • 34249789279 scopus 로고    scopus 로고
    • Spontaneous DNA breakage in single living Escherichia coli cells
    • Pennington J.M., Rosenberg S.M. Spontaneous DNA breakage in single living Escherichia coli cells. Nat. Genet. 2007, 39:797-802.
    • (2007) Nat. Genet. , vol.39 , pp. 797-802
    • Pennington, J.M.1    Rosenberg, S.M.2
  • 110
    • 0017697662 scopus 로고
    • Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome
    • Krasin F., Hutchinson F. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J. Mol. Biol. 1977, 116:81-98.
    • (1977) J. Mol. Biol. , vol.116 , pp. 81-98
    • Krasin, F.1    Hutchinson, F.2
  • 111
    • 0018077269 scopus 로고
    • Repair of cross-linked DNA and survival of Escherichia coli treated with psoralen and light: effects of mutations influencing genetic recombination and DNA metabolism
    • Sinden R.R., Cole R.S. Repair of cross-linked DNA and survival of Escherichia coli treated with psoralen and light: effects of mutations influencing genetic recombination and DNA metabolism. J. Bacteriol. 1978, 136:538-547.
    • (1978) J. Bacteriol. , vol.136 , pp. 538-547
    • Sinden, R.R.1    Cole, R.S.2
  • 112
    • 0028246888 scopus 로고
    • Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities
    • Lohman T.M., Ferrari M.E. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 1994, 63:527-570.
    • (1994) Annu. Rev. Biochem. , vol.63 , pp. 527-570
    • Lohman, T.M.1    Ferrari, M.E.2
  • 113
    • 0022971443 scopus 로고
    • Interaction of recA protein with a photoaffinity analogue of ATP, 8-azido-ATP: determination of nucleotide cofactor binding parameters and of the relationship between ATP binding and ATP hydrolysis
    • Kowalczykowski S.C. Interaction of recA protein with a photoaffinity analogue of ATP, 8-azido-ATP: determination of nucleotide cofactor binding parameters and of the relationship between ATP binding and ATP hydrolysis. Biochemistry 1986, 25:5872-5881.
    • (1986) Biochemistry , vol.25 , pp. 5872-5881
    • Kowalczykowski, S.C.1
  • 114
    • 0019839856 scopus 로고
    • Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Steady state kinetic analysis of ATP hydrolysis
    • Weinstock G.M., et al. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Steady state kinetic analysis of ATP hydrolysis. J. Biol. Chem. 1981, 256:8845-8849.
    • (1981) J. Biol. Chem. , vol.256 , pp. 8845-8849
    • Weinstock, G.M.1
  • 115
    • 0022429092 scopus 로고
    • Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors
    • Menetski J.P., Kowalczykowski S.C. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J. Mol. Biol. 1985, 181:281-295.
    • (1985) J. Mol. Biol. , vol.181 , pp. 281-295
    • Menetski, J.P.1    Kowalczykowski, S.C.2
  • 116
    • 0032518216 scopus 로고    scopus 로고
    • Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay
    • Zaitsev E.N., Kowalczykowski S.C. Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay. Nucleic Acids Res. 1998, 26:650-654.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 650-654
    • Zaitsev, E.N.1    Kowalczykowski, S.C.2
  • 117
    • 0003968406 scopus 로고
    • Constable & Company Ltd
    • Perrin J. Les Atomes 1916, Constable & Company Ltd.
    • (1916) Les Atomes
    • Perrin, J.1
  • 118
    • 84857166722 scopus 로고    scopus 로고
    • Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination
    • Neumann F.R., et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 2012, 26:369-383.
    • (2012) Genes Dev. , vol.26 , pp. 369-383
    • Neumann, F.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.