메뉴 건너뛰기




Volumn 113, Issue 2, 2016, Pages E146-E154

Chromosome position determines the success of double-strand break repair

Author keywords

Chromosome conformation; Donor location; Double strand break repair; Homologous recombination; Homology search

Indexed keywords

DOUBLE STRANDED DNA; FUNGAL DNA; GENOMIC DNA; REPLICATION FACTOR A; SINGLE STRANDED DNA; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84954477354     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1523660113     Document Type: Article
Times cited : (73)

References (47)
  • 1
    • 79952768906 scopus 로고    scopus 로고
    • Real-time analysis of double-strand DNA break repair by homologous recombination
    • Hicks WM, Yamaguchi M, Haber JE (2011) Real-time analysis of double-strand DNA break repair by homologous recombination. Proc Natl Acad Sci USA 108(8): 3108-3115.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.8 , pp. 3108-3115
    • Hicks, W.M.1    Yamaguchi, M.2    Haber, J.E.3
  • 2
    • 0034041633 scopus 로고    scopus 로고
    • Centromere clustering is a major determinant of yeast interphase nuclear organization
    • Jin QW, Fuchs J, Loidl J (2000) Centromere clustering is a major determinant of yeast interphase nuclear organization. J Cell Sci 113(Pt 11):1903-1912.
    • (2000) J Cell Sci , vol.113 , pp. 1903-1912
    • Jin, Q.W.1    Fuchs, J.2    Loidl, J.3
  • 3
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306-1311.
    • (2002) Science , vol.295 , Issue.5558 , pp. 1306-1311
    • Dekker, J.1    Rippe, K.2    Dekker, M.3    Kleckner, N.4
  • 4
    • 77952744854 scopus 로고    scopus 로고
    • A three-dimensional model of the yeast genome
    • Duan Z, et al. (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363-367.
    • (2010) Nature , vol.465 , Issue.7296 , pp. 363-367
    • Duan, Z.1
  • 5
    • 84878556268 scopus 로고    scopus 로고
    • Effect of nuclear architecture on the efficiency of double-strand break repair
    • Agmon N, Liefshitz B, Zimmer C, Fabre E, Kupiec M (2013) Effect of nuclear architecture on the efficiency of double-strand break repair. Nat Cell Biol 15(6):694-699.
    • (2013) Nat Cell Biol , vol.15 , Issue.6 , pp. 694-699
    • Agmon, N.1    Liefshitz, B.2    Zimmer, C.3    Fabre, E.4    Kupiec, M.5
  • 6
    • 31044432248 scopus 로고    scopus 로고
    • Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region
    • Therizols P, et al. (2006) Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J Cell Biol 172(2): 189-199.
    • (2006) J Cell Biol , vol.172 , Issue.2 , pp. 189-199
    • Therizols, P.1
  • 7
    • 85052279093 scopus 로고    scopus 로고
    • How to build a yeast nucleus
    • Wong H, Arbona JM, Zimmer C (2013) How to build a yeast nucleus. Nucleus 4(5): 361-366.
    • (2013) Nucleus , vol.4 , Issue.5 , pp. 361-366
    • Wong, H.1    Arbona, J.M.2    Zimmer, C.3
  • 8
    • 80053558376 scopus 로고    scopus 로고
    • Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
    • Chiarle R, et al. (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147(1):107-119.
    • (2011) Cell , vol.147 , Issue.1 , pp. 107-119
    • Chiarle, R.1
  • 9
    • 84881255212 scopus 로고    scopus 로고
    • Spatial dynamics of chromosome translocations in living cells
    • Roukos V, et al. (2013) Spatial dynamics of chromosome translocations in living cells. Science 341(6146):660-664.
    • (2013) Science , vol.341 , Issue.6146 , pp. 660-664
    • Roukos, V.1
  • 10
    • 0024425887 scopus 로고
    • Checkpoints: Controls that ensure the order of cell cycle events
    • Hartwell LH, Weinert TA (1989) Checkpoints: Controls that ensure the order of cell cycle events. Science 246(4930):629-634.
    • (1989) Science , vol.246 , Issue.4930 , pp. 629-634
    • Hartwell, L.H.1    Weinert, T.A.2
  • 11
    • 0027421043 scopus 로고
    • Loss of a yeast telomere: Arrest, recovery, and chromosome loss
    • Sandell LL, Zakian VA (1993) Loss of a yeast telomere: Arrest, recovery, and chromosome loss. Cell 75(4):729-739.
    • (1993) Cell , vol.75 , Issue.4 , pp. 729-739
    • Sandell, L.L.1    Zakian, V.A.2
  • 12
    • 0035105240 scopus 로고    scopus 로고
    • Regulation of saccharomyces rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
    • Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7(2):293-300.
    • (2001) Mol Cell , vol.7 , Issue.2 , pp. 293-300
    • Pellicioli, A.1    Lee, S.E.2    Lucca, C.3    Foiani, M.4    Haber, J.E.5
  • 13
    • 84904260664 scopus 로고    scopus 로고
    • Effect of chromosome tethering on nuclear organization in yeast
    • Avşaroʇ lu B, et al. (2014) Effect of chromosome tethering on nuclear organization in yeast. PLoS One 9(7):e102474.
    • (2014) PLoS One , vol.9 , Issue.7 , pp. e102474
    • Avşaroʇlu, B.1
  • 14
    • 84887416171 scopus 로고    scopus 로고
    • 3D chromosome modeling with semi-definite programming and Hi-C data
    • Zhang Z, Li G, Toh KC, Sung WK (2013) 3D chromosome modeling with semi-definite programming and Hi-C data. J Comput Biol 20(11):831-846.
    • (2013) J Comput Biol , vol.20 , Issue.11 , pp. 831-846
    • Zhang, Z.1    Li, G.2    Toh, K.C.3    Sung, W.K.4
  • 15
    • 84907424924 scopus 로고    scopus 로고
    • A statistical approach for inferring the 3D structure of the genome
    • Varoquaux N, Ay F, Noble WS, Vert JP (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics 30(12):i26-i33.
    • (2014) Bioinformatics , vol.30 , Issue.12 , pp. i26-i33
    • Varoquaux, N.1    Ay, F.2    Noble, W.S.3    Vert, J.P.4
  • 17
    • 84902673854 scopus 로고    scopus 로고
    • Reproducibility of 3D chromatin configuration reconstructions
    • Segal MR, Xiong H, Capurso D, Vazquez M, Arsuaga J (2014) Reproducibility of 3D chromatin configuration reconstructions. Biostatistics 15(3):442-456.
    • (2014) Biostatistics , vol.15 , Issue.3 , pp. 442-456
    • Segal, M.R.1    Xiong, H.2    Capurso, D.3    Vazquez, M.4    Arsuaga, J.5
  • 18
    • 0024027329 scopus 로고
    • Physical monitoring of mating type switching in Saccharomyces cerevisiae
    • Connolly B, White CI, Haber JE (1988) Physical monitoring of mating type switching in Saccharomyces cerevisiae. Mol Cell Biol 8(6):2342-2349.
    • (1988) Mol Cell Biol , vol.8 , Issue.6 , pp. 2342-2349
    • Connolly, B.1    White, C.I.2    Haber, J.E.3
  • 19
    • 31444445458 scopus 로고    scopus 로고
    • A phosphatase complex that dephosphorylates gamma H2AX regulates DNA damage checkpoint recovery
    • Keogh MC, et al. (2006) A phosphatase complex that dephosphorylates gamma H2AX regulates DNA damage checkpoint recovery. Nature 439(7075):497-501.
    • (2006) Nature , vol.439 , Issue.7075 , pp. 497-501
    • Keogh, M.C.1
  • 20
    • 84888018217 scopus 로고    scopus 로고
    • Organization of the mitotic chromosome
    • Naumova N, et al. (2013) Organization of the mitotic chromosome. Science 342(6161): 948-953.
    • (2013) Science , vol.342 , Issue.6161 , pp. 948-953
    • Naumova, N.1
  • 21
    • 0028174255 scopus 로고
    • Chromosome condensation and sister chromatid pairing in budding yeast
    • Guacci V, Hogan E, Koshland D (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125(3):517-530.
    • (1994) J Cell Biol , vol.125 , Issue.3 , pp. 517-530
    • Guacci, V.1    Hogan, E.2    Koshland, D.3
  • 22
    • 83455197497 scopus 로고    scopus 로고
    • Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition
    • Coïc E, et al. (2011) Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics 189(4):1225-1233.
    • (2011) Genetics , vol.189 , Issue.4 , pp. 1225-1233
    • Coïc, E.1
  • 23
    • 0033008194 scopus 로고    scopus 로고
    • Homology search and choice of homologous partner during mitotic recombination
    • Inbar O, Kupiec M (1999) Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 19(6):4134-4142.
    • (1999) Mol Cell Biol , vol.19 , Issue.6 , pp. 4134-4142
    • Inbar, O.1    Kupiec, M.2
  • 24
    • 0030592510 scopus 로고    scopus 로고
    • A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III
    • Wu X, Haber JE (1996) A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87(2):277-285.
    • (1996) Cell , vol.87 , Issue.2 , pp. 277-285
    • Wu, X.1    Haber, J.E.2
  • 25
    • 84860568718 scopus 로고    scopus 로고
    • Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1
    • Li J, et al. (2012) Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet 8(4):e1002630.
    • (2012) PLoS Genet , vol.8 , Issue.4 , pp. e1002630
    • Li, J.1
  • 26
    • 0026583875 scopus 로고
    • Two alternative pathways of doublestrand break repair that are kinetically separable and independently modulated
    • Fishman-Lobell J, Rudin N, Haber JE (1992) Two alternative pathways of doublestrand break repair that are kinetically separable and independently modulated. Mol Cell Biol 12(3):1292-1303.
    • (1992) Mol Cell Biol , vol.12 , Issue.3 , pp. 1292-1303
    • Fishman-Lobell, J.1    Rudin, N.2    Haber, J.E.3
  • 27
    • 84868694661 scopus 로고    scopus 로고
    • The saccharomyces cerevisiae chromatin remodeler fun30 regulates DNA end resection and checkpoint deactivation
    • Eapen VV, Sugawara N, Tsabar M, Wu WH, Haber JE (2012) The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation. Mol Cell Biol 32(22):4727-4740.
    • (2012) Mol Cell Biol , vol.32 , Issue.22 , pp. 4727-4740
    • Eapen, V.V.1    Sugawara, N.2    Tsabar, M.3    Wu, W.H.4    Haber, J.E.5
  • 28
    • 0025020278 scopus 로고
    • Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
    • White CI, Haber JE (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9(3):663-673.
    • (1990) EMBO J , vol.9 , Issue.3 , pp. 663-673
    • White, C.I.1    Haber, J.E.2
  • 29
    • 59949092789 scopus 로고    scopus 로고
    • A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair
    • Jain S, et al. (2009) A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev 23(3):291-303.
    • (2009) Genes Dev , vol.23 , Issue.3 , pp. 291-303
    • Jain, S.1
  • 30
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
    • Vaze MB, et al. (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10(2):373-385.
    • (2002) Mol Cell , vol.10 , Issue.2 , pp. 373-385
    • Vaze, M.B.1
  • 31
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee SE, et al. (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94(3):399-409.
    • (1998) Cell , vol.94 , Issue.3 , pp. 399-409
    • Lee, S.E.1
  • 32
    • 34147205098 scopus 로고    scopus 로고
    • Inverted DNA repeats channel repair of distant doublestrand breaks into chromatid fusions and chromosomal rearrangements
    • Van Hulle K, et al. (2007) Inverted DNA repeats channel repair of distant doublestrand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27(7):2601-2614.
    • (2007) Mol Cell Biol , vol.27 , Issue.7 , pp. 2601-2614
    • Van Hulle, K.1
  • 33
    • 53349165577 scopus 로고    scopus 로고
    • Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51
    • Downing B, Morgan R, Van Hulle K, Deem A, Malkova A (2008) Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutat Res 645(1-2):9-18.
    • (2008) Mutat Res , vol.645 , Issue.1-2 , pp. 9-18
    • Downing, B.1    Morgan, R.2    Van Hulle, K.3    Deem, A.4    Malkova, A.5
  • 34
    • 84860517399 scopus 로고    scopus 로고
    • Increased chromosome mobility facilitates homology search during recombination
    • Miné-Hattab J, Rothstein R (2012) Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol 14(5):510-517.
    • (2012) Nat Cell Biol , vol.14 , Issue.5 , pp. 510-517
    • Miné-Hattab, J.1    Rothstein, R.2
  • 35
    • 33644691699 scopus 로고    scopus 로고
    • The saccharomyces cerevisiae sae2 protein promotes resection and bridging of double strand break ends
    • Clerici M, Mantiero D, Lucchini G, Longhese MP (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280(46):38631-38638.
    • (2005) J Biol Chem , vol.280 , Issue.46 , pp. 38631-38638
    • Clerici, M.1    Mantiero, D.2    Lucchini, G.3    Longhese, M.P.4
  • 36
    • 84866898711 scopus 로고    scopus 로고
    • The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection
    • Costelloe T, et al. (2012) The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489(7417):581-584.
    • (2012) Nature , vol.489 , Issue.7417 , pp. 581-584
    • Costelloe, T.1
  • 37
    • 84906790073 scopus 로고    scopus 로고
    • SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice
    • Horigome C, et al. (2014) SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice. Mol Cell 55(4):626-639.
    • (2014) Mol Cell , vol.55 , Issue.4 , pp. 626-639
    • Horigome, C.1
  • 38
    • 0041903834 scopus 로고    scopus 로고
    • In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination
    • Sugawara N, Wang X, Haber JE (2003) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12(1):209-219.
    • (2003) Mol Cell , vol.12 , Issue.1 , pp. 209-219
    • Sugawara, N.1    Wang, X.2    Haber, J.E.3
  • 39
    • 84878183628 scopus 로고    scopus 로고
    • RPA coordinates DNA end resection and prevents formation of DNA hairpins
    • Chen H, Lisby M, Symington LS (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50(4):589-600.
    • (2013) Mol Cell , vol.50 , Issue.4 , pp. 589-600
    • Chen, H.1    Lisby, M.2    Symington, L.S.3
  • 40
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano T, et al. (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59-64.
    • (2013) Nature , vol.502 , Issue.7469 , pp. 59-64
    • Nagano, T.1
  • 41
    • 1842763188 scopus 로고    scopus 로고
    • New insights into the mechanism of homologous recombination in yeast
    • Aylon Y, Kupiec M (2004) New insights into the mechanism of homologous recombination in yeast. Mutat Res 566(3):231-248.
    • (2004) Mutat Res , vol.566 , Issue.3 , pp. 231-248
    • Aylon, Y.1    Kupiec, M.2
  • 42
    • 0034958793 scopus 로고    scopus 로고
    • Exo1-dependent mutator mutations: Model system for studying functional interactions in mismatch repair
    • Amin NS, Nguyen MN, Oh S, Kolodner RD (2001) exo1-Dependent mutator mutations: Model system for studying functional interactions in mismatch repair. Mol Cell Biol 21(15):5142-5155.
    • (2001) Mol Cell Biol , vol.21 , Issue.15 , pp. 5142-5155
    • Amin, N.S.1    Nguyen, M.N.2    Oh, S.3    Kolodner, R.D.4
  • 43
    • 84859257149 scopus 로고    scopus 로고
    • DNA resection at chromosome breaks promotes genome stability by constraining non-allelic homologous recombination
    • Tan FJ, Hoang ML, Koshland D (2012) DNA resection at chromosome breaks promotes genome stability by constraining non-allelic homologous recombination. PLoS Genet 8(3):e1002633.
    • (2012) PLoS Genet , vol.8 , Issue.3 , pp. e1002633
    • Tan, F.J.1    Hoang, M.L.2    Koshland, D.3
  • 44
    • 84876826267 scopus 로고    scopus 로고
    • Monitoring homology search during DNA double-strand break repair in vivo
    • Renkawitz J, Lademann CA, Kalocsay M, Jentsch S (2013) Monitoring homology search during DNA double-strand break repair in vivo. Mol Cell 50(2):261-272.
    • (2013) Mol Cell , vol.50 , Issue.2 , pp. 261-272
    • Renkawitz, J.1    Lademann, C.A.2    Kalocsay, M.3    Jentsch, S.4
  • 45
    • 84923369935 scopus 로고    scopus 로고
    • DNA sequence alignment by microhomology sampling during homologous recombination
    • Qi Z, et al. (2015) DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160(5):856-869.
    • (2015) Cell , vol.160 , Issue.5 , pp. 856-869
    • Qi, Z.1
  • 46
    • 76749157172 scopus 로고    scopus 로고
    • Mad2 prolongs DNA damage checkpoint arrest caused by a double-strand break via a centromeredependent mechanism
    • Dotiwala F, Harrison JC, Jain S, Sugawara N, Haber JE (2010) Mad2 prolongs DNA damage checkpoint arrest caused by a double-strand break via a centromeredependent mechanism. Curr Biol 20(4):328-332.
    • (2010) Curr Biol , vol.20 , Issue.4 , pp. 328-332
    • Dotiwala, F.1    Harrison, J.C.2    Jain, S.3    Sugawara, N.4    Haber, J.E.5
  • 47
    • 84897531574 scopus 로고    scopus 로고
    • The biogenesis of chromosome translocations
    • Roukos V, Misteli T (2014) The biogenesis of chromosome translocations. Nat Cell Biol 16(4):293-300.
    • (2014) Nat Cell Biol , vol.16 , Issue.4 , pp. 293-300
    • Roukos, V.1    Misteli, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.