메뉴 건너뛰기




Volumn 21, Issue 8, 2016, Pages 1257-1271

Application areas of 3D bioprinting

Author keywords

[No Author keywords available]

Indexed keywords

BIOPRINTING; BONE TISSUE; CANCER RESEARCH; CARTILAGE; DRUG SCREENING; HEART; HEART VALVE; HIGH THROUGHPUT SCREENING; HUMAN; LIVER; LUNG PARENCHYMA; NERVOUS TISSUE; NONHUMAN; ORGAN TRANSPLANTATION; PANCREATIC TISSUE; PHARMACEUTICS; REGENERATIVE MEDICINE; REVIEW; SKIN; THREE DIMENSIONAL PRINTING; TISSUE ENGINEERING; TISSUE TRANSPLANTATION; VASCULAR TISSUE; ANIMAL; DRUG DEVELOPMENT; MEDICAL RESEARCH; NEOPLASM;

EID: 84964692969     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2016.04.006     Document Type: Review
Times cited : (259)

References (100)
  • 1
    • 84930926663 scopus 로고    scopus 로고
    • Bioprinting scale-up tissue and organ constructs for transplantation
    • Ozbolat, I.T., Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33 (2015), 395–400.
    • (2015) Trends Biotechnol. , vol.33 , pp. 395-400
    • Ozbolat, I.T.1
  • 2
    • 84942906547 scopus 로고    scopus 로고
    • Scaffold-based or scaffold-free bioprinting: competing or complementing approaches?
    • Ozbolat, I.T., Scaffold-based or scaffold-free bioprinting: competing or complementing approaches?. J. Nanotechnol. Eng. Med., 6, 2015, 24701.
    • (2015) J. Nanotechnol. Eng. Med. , vol.6 , pp. 24701
    • Ozbolat, I.T.1
  • 3
    • 79952011307 scopus 로고    scopus 로고
    • Tissue engineering by self-assembly and bio-printing of living cells
    • Jakab, K., et al. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2, 2010, 22001.
    • (2010) Biofabrication , vol.2 , pp. 22001
    • Jakab, K.1
  • 4
    • 27644568924 scopus 로고    scopus 로고
    • 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
    • Moroni, L., et al. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27 (2006), 974–985.
    • (2006) Biomaterials , vol.27 , pp. 974-985
    • Moroni, L.1
  • 5
    • 82055196892 scopus 로고    scopus 로고
    • Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip
    • Snyder, J.E., et al. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication, 3, 2011, 034112.
    • (2011) Biofabrication , vol.3 , pp. 034112
    • Snyder, J.E.1
  • 6
    • 33947424855 scopus 로고    scopus 로고
    • Are we reporting the same thing?
    • Perkins, J.D., Are we reporting the same thing?. Liver Transpl. 13 (2007), 465–466.
    • (2007) Liver Transpl. , vol.13 , pp. 465-466
    • Perkins, J.D.1
  • 7
    • 84940450098 scopus 로고    scopus 로고
    • Bioprinting for cancer research
    • Knowlton, S., et al. Bioprinting for cancer research. Trends Biotechnol. 33 (2015), 504–513.
    • (2015) Trends Biotechnol. , vol.33 , pp. 504-513
    • Knowlton, S.1
  • 8
    • 84880237098 scopus 로고    scopus 로고
    • Bioprinting toward organ fabrication: challenges and future trends
    • Ozbolat, I.T., Yu, Y., Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60 (2013), 691–699.
    • (2013) IEEE Trans. Biomed. Eng. , vol.60 , pp. 691-699
    • Ozbolat, I.T.1    Yu, Y.2
  • 9
    • 84943327685 scopus 로고    scopus 로고
    • Correction: scaffold-free tubular tissues created by a Bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae
    • Itoh, M., et al. Correction: scaffold-free tubular tissues created by a Bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS ONE, 10, 2015, e0145971.
    • (2015) PLoS ONE , vol.10 , pp. e0145971
    • Itoh, M.1
  • 10
    • 84908496206 scopus 로고    scopus 로고
    • Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
    • Gao, G., et al. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9 (2014), 1304–1311.
    • (2014) Biotechnol. J. , vol.9 , pp. 1304-1311
    • Gao, G.1
  • 11
    • 77951245659 scopus 로고    scopus 로고
    • In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice
    • Keriquel, V., et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication, 2, 2010, 14101.
    • (2010) Biofabrication , vol.2 , pp. 14101
    • Keriquel, V.1
  • 12
    • 38349195609 scopus 로고    scopus 로고
    • Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
    • Fedorovich, N.E., et al. Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. A 14 (2008), 127–133.
    • (2008) Tissue Eng. A , vol.14 , pp. 127-133
    • Fedorovich, N.E.1
  • 13
    • 38349076688 scopus 로고    scopus 로고
    • Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations
    • Phillippi, J.A., et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26 (2008), 127–134.
    • (2008) Stem Cells , vol.26 , pp. 127-134
    • Phillippi, J.A.1
  • 14
    • 84895473350 scopus 로고    scopus 로고
    • Cardiac tissue engineering: state of the art
    • Hirt, M.N., et al. Cardiac tissue engineering: state of the art. Circ. Res. 114 (2014), 354–367.
    • (2014) Circ. Res. , vol.114 , pp. 354-367
    • Hirt, M.N.1
  • 15
    • 84871442001 scopus 로고    scopus 로고
    • Functional screening identifies miRNAs inducing cardiac regeneration
    • Eulalio, A., et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492 (2012), 376–381.
    • (2012) Nature , vol.492 , pp. 376-381
    • Eulalio, A.1
  • 16
    • 40749083225 scopus 로고    scopus 로고
    • Tissue engineering by self-assembly of cells printed into topologically defined structures
    • Jakab, K., et al. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. A 14 (2008), 413–421.
    • (2008) Tissue Eng. A , vol.14 , pp. 413-421
    • Jakab, K.1
  • 17
    • 79952108545 scopus 로고    scopus 로고
    • Fabrication and characterization of bio-engineered cardiac pseudo tissues
    • Xu, T., et al. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication, 1, 2009, 35001.
    • (2009) Biofabrication , vol.1 , pp. 35001
    • Xu, T.1
  • 18
    • 80053604735 scopus 로고    scopus 로고
    • Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration
    • Gaebel, R., et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32 (2011), 9218–9230.
    • (2011) Biomaterials , vol.32 , pp. 9218-9230
    • Gaebel, R.1
  • 19
    • 83555177196 scopus 로고    scopus 로고
    • Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells
    • Gaetani, R., et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33 (2012), 1782–1790.
    • (2012) Biomaterials , vol.33 , pp. 1782-1790
    • Gaetani, R.1
  • 20
    • 84926337395 scopus 로고    scopus 로고
    • Repair and tissue engineering techniques for articular cartilage
    • Makris, E.A., et al. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11 (2015), 21–34.
    • (2015) Nat. Rev. Rheumatol. , vol.11 , pp. 21-34
    • Makris, E.A.1
  • 21
    • 78650862905 scopus 로고    scopus 로고
    • Laser printing of stem cells for biofabrication of scaffold-free autologous grafts
    • Gruene, M., et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. C: Methods 17 (2010), 79–87.
    • (2010) Tissue Eng. C: Methods , vol.17 , pp. 79-87
    • Gruene, M.1
  • 22
    • 84861826955 scopus 로고    scopus 로고
    • Direct human cartilage repair using three-dimensional bioprinting technology
    • Cui, X., et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. A 18 (2012), 1304–1312.
    • (2012) Tissue Eng. A , vol.18 , pp. 1304-1312
    • Cui, X.1
  • 23
    • 84864302244 scopus 로고    scopus 로고
    • Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation
    • Cui, X., et al. Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol. Bioeng. 109 (2012), 2357–2368.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2357-2368
    • Cui, X.1
  • 24
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • Xu, T.X., et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication, 5, 2013, 15001.
    • (2013) Biofabrication , vol.5 , pp. 15001
    • Xu, T.X.1
  • 25
    • 84888369158 scopus 로고    scopus 로고
    • Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs
    • Ozbolat, I.T., et al. Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot. Comput. Integr. Manuf. 30 (2014), 295–304.
    • (2014) Robot. Comput. Integr. Manuf. , vol.30 , pp. 295-304
    • Ozbolat, I.T.1
  • 26
    • 84879103253 scopus 로고    scopus 로고
    • 3D printed bionic ears
    • Mannoor, M.S., et al. 3D printed bionic ears. Nano Lett. 13 (2013), 2634–2639.
    • (2013) Nano Lett. , vol.13 , pp. 2634-2639
    • Mannoor, M.S.1
  • 27
    • 84929176653 scopus 로고    scopus 로고
    • 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
    • Markstedt, K., et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16 (2015), 1489–1496.
    • (2015) Biomacromolecules , vol.16 , pp. 1489-1496
    • Markstedt, K.1
  • 28
    • 84991794169 scopus 로고    scopus 로고
    • 3D-printed hydrogel technologies for tissue-engineered heart valves
    • Hockaday, L.A., et al. 3D-printed hydrogel technologies for tissue-engineered heart valves. 3D Print. Addit. Manuf. 1 (2014), 122–136.
    • (2014) 3D Print. Addit. Manuf. , vol.1 , pp. 122-136
    • Hockaday, L.A.1
  • 29
    • 84939150480 scopus 로고    scopus 로고
    • Bioprinting a cardiac valve
    • Jana, S., Lerman, A., Bioprinting a cardiac valve. Biotechnol. Adv. 33 (2015), 1503–1521.
    • (2015) Biotechnol. Adv. , vol.33 , pp. 1503-1521
    • Jana, S.1    Lerman, A.2
  • 30
    • 84866055893 scopus 로고    scopus 로고
    • Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds
    • Hockaday, L.A., et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 4, 2012, 35005.
    • (2012) Biofabrication , vol.4 , pp. 35005
    • Hockaday, L.A.1
  • 31
    • 34547399078 scopus 로고    scopus 로고
    • Fab@Home: the personal desktop fabricator kitnull
    • Malone, E., Lipson, H., Fab@Home: the personal desktop fabricator kitnull. Rapid Prototyp. J. 13 (2007), 245–255.
    • (2007) Rapid Prototyp. J. , vol.13 , pp. 245-255
    • Malone, E.1    Lipson, H.2
  • 32
    • 84884211629 scopus 로고    scopus 로고
    • 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
    • Duan, B., et al. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 101A (2013), 1255–1264.
    • (2013) J. Biomed. Mater. Res. Part A , vol.101A , pp. 1255-1264
    • Duan, B.1
  • 33
    • 84898059103 scopus 로고    scopus 로고
    • Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells
    • Duan, B., et al. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10 (2014), 1836–1846.
    • (2014) Acta Biomater. , vol.10 , pp. 1836-1846
    • Duan, B.1
  • 34
    • 84941796999 scopus 로고    scopus 로고
    • 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip
    • No, D.Y., et al. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15 (2015), 3822–3837.
    • (2015) Lab Chip , vol.15 , pp. 3822-3837
    • No, D.Y.1
  • 35
    • 84954098843 scopus 로고    scopus 로고
    • Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D
    • Faulkner-Jones, A., et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication, 7, 2015, 44102.
    • (2015) Biofabrication , vol.7 , pp. 44102
    • Faulkner-Jones, A.1
  • 36
    • 84899520611 scopus 로고    scopus 로고
    • Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels
    • Bertassoni, L.E., et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6, 2014, 024105.
    • (2014) Biofabrication , vol.6 , pp. 024105
    • Bertassoni, L.E.1
  • 37
    • 84901915693 scopus 로고    scopus 로고
    • Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
    • Bertassoni, L.E., et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14 (2014), 2202–2211.
    • (2014) Lab Chip , vol.14 , pp. 2202-2211
    • Bertassoni, L.E.1
  • 38
    • 84942297050 scopus 로고    scopus 로고
    • Engineering an in vitro air-blood barrier by 3D bioprinting
    • Horváth, L., et al. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep., 5, 2015, 7974.
    • (2015) Sci. Rep. , vol.5 , pp. 7974
    • Horváth, L.1
  • 39
    • 77952545276 scopus 로고    scopus 로고
    • Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
    • Lee, Y-B., et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp. Neurol. 223 (2010), 645–652.
    • (2010) Exp. Neurol. , vol.223 , pp. 645-652
    • Lee, Y.-B.1
  • 40
    • 84941560619 scopus 로고    scopus 로고
    • 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair
    • Hsieh, F-Y., et al. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71 (2015), 48–57.
    • (2015) Biomaterials , vol.71 , pp. 48-57
    • Hsieh, F.-Y.1
  • 41
    • 84889012321 scopus 로고    scopus 로고
    • Biofabrication and testing of a fully cellular nerve graft
    • Owens, C.M., et al. Biofabrication and testing of a fully cellular nerve graft. Biofabrication, 5, 2013, 45007.
    • (2013) Biofabrication , vol.5 , pp. 45007
    • Owens, C.M.1
  • 42
    • 84910673362 scopus 로고    scopus 로고
    • Generation of functional human pancreatic β cells in vitro
    • Pagliuca, F.W., et al. Generation of functional human pancreatic β cells in vitro. Cell 159 (2015), 428–439.
    • (2015) Cell , vol.159 , pp. 428-439
    • Pagliuca, F.W.1
  • 43
    • 84947814701 scopus 로고    scopus 로고
    • Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation
    • Marchioli, G., Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication, 7, 2015, 25009.
    • (2015) Biofabrication , vol.7 , pp. 25009
    • Marchioli, G.1
  • 44
    • 0029084911 scopus 로고
    • Effects of divalent cations on exocytosis and endocytosis from single mouse pancreatic beta-cells
    • Proks, P., Ashcroft, F.M., Effects of divalent cations on exocytosis and endocytosis from single mouse pancreatic beta-cells. J. Physiol. 487 (1995), 465–477.
    • (1995) J. Physiol. , vol.487 , pp. 465-477
    • Proks, P.1    Ashcroft, F.M.2
  • 45
    • 84945237438 scopus 로고    scopus 로고
    • Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering
    • Akkouch, A., et al. Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication, 7, 2015, 31002.
    • (2015) Biofabrication , vol.7 , pp. 31002
    • Akkouch, A.1
  • 46
    • 84861182693 scopus 로고    scopus 로고
    • Application of split-thickness dermal grafts in deep partial- and full-thickness burns: a new source of auto-skin grafting
    • Coruh, A., Yontar, Y., Application of split-thickness dermal grafts in deep partial- and full-thickness burns: a new source of auto-skin grafting. J. Burn Care Res. 33 (2012), e94–e100.
    • (2012) J. Burn Care Res. , vol.33 , pp. e94-e100
    • Coruh, A.1    Yontar, Y.2
  • 47
    • 76149091227 scopus 로고    scopus 로고
    • The use of human deceased donor skin allograft in burn care
    • Leon-Villapalos, J., et al. The use of human deceased donor skin allograft in burn care. Cell Tissue Bank. 11 (2010), 99–104.
    • (2010) Cell Tissue Bank. , vol.11 , pp. 99-104
    • Leon-Villapalos, J.1
  • 48
    • 34249823651 scopus 로고    scopus 로고
    • Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration
    • Metcalfe, A.D., Ferguson, M.W.J., Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4 (2007), 413–437.
    • (2007) J. R. Soc. Interface , vol.4 , pp. 413-437
    • Metcalfe, A.D.1    Ferguson, M.W.J.2
  • 49
    • 84901016012 scopus 로고    scopus 로고
    • Design and fabrication of human skin by three-dimensional bioprinting
    • Lee, V., et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. C: Methods 20 (2013), 473–484.
    • (2013) Tissue Eng. C: Methods , vol.20 , pp. 473-484
    • Lee, V.1
  • 50
    • 84861199493 scopus 로고    scopus 로고
    • Skin tissue generation by laser cell printing
    • Koch, L., et al. Skin tissue generation by laser cell printing. Biotechnol. Bioeng. 109 (2012), 1855–1863.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 1855-1863
    • Koch, L.1
  • 51
    • 84874591959 scopus 로고    scopus 로고
    • Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
    • Michael, S., et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE, 8, 2013, e57741.
    • (2013) PLoS ONE , vol.8 , pp. e57741
    • Michael, S.1
  • 52
    • 84921395926 scopus 로고    scopus 로고
    • In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds
    • Yanez, M., et al. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng. A 21 (2014), 224–233.
    • (2014) Tissue Eng. A , vol.21 , pp. 224-233
    • Yanez, M.1
  • 53
    • 84873046124 scopus 로고    scopus 로고
    • Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
    • Skardal, A., et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1 (2012), 792–802.
    • (2012) Stem Cells Transl. Med. , vol.1 , pp. 792-802
    • Skardal, A.1
  • 54
    • 84889688816 scopus 로고    scopus 로고
    • Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth
    • Higgins, C.A., et al. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 19679–19688.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 19679-19688
    • Higgins, C.A.1
  • 55
    • 84938066460 scopus 로고    scopus 로고
    • Direct bioprinting of vessel-like tubular microfluidic channels
    • Zhang, Y., et al. Direct bioprinting of vessel-like tubular microfluidic channels. J. Nanotechnol. Eng. Med., 4, 2013, 020902.
    • (2013) J. Nanotechnol. Eng. Med. , vol.4 , pp. 020902
    • Zhang, Y.1
  • 56
    • 84880908737 scopus 로고    scopus 로고
    • Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels
    • Yu, Y., et al. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J. Biomech. Eng., 135, 2013, 91011.
    • (2013) J. Biomech. Eng. , vol.135 , pp. 91011
    • Yu, Y.1
  • 57
    • 84877736127 scopus 로고    scopus 로고
    • Characterization of printable cellular micro-fluidic channels for tissue engineering
    • Zhang, Y., et al. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication, 5, 2013, 025004.
    • (2013) Biofabrication , vol.5 , pp. 025004
    • Zhang, Y.1
  • 58
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte, C., et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30 (2009), 5910–5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1
  • 59
    • 84925591776 scopus 로고    scopus 로고
    • Freeform inkjet printing of cellular structures with bifurcations
    • Christensen, K., et al. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol. Bioeng. 112 (2015), 1047–1055.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 1047-1055
    • Christensen, K.1
  • 60
    • 84907658001 scopus 로고    scopus 로고
    • Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs
    • Blaeser, A., et al. Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs. Biores. Open Access 2 (2013), 374–384.
    • (2013) Biores. Open Access , vol.2 , pp. 374-384
    • Blaeser, A.1
  • 61
    • 84954138615 scopus 로고    scopus 로고
    • Freeform drop-on-demand laser printing of 3D alginate and cellular constructs
    • Xiong, R., Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication, 7, 2015, 45011.
    • (2015) Biofabrication , vol.7 , pp. 45011
    • Xiong, R.1
  • 62
    • 65549089737 scopus 로고    scopus 로고
    • Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology
    • Nishiyama, Y., et al. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng., 131, 2008, 35001.
    • (2008) J. Biomech. Eng. , vol.131 , pp. 35001
    • Nishiyama, Y.1
  • 63
    • 84906938147 scopus 로고    scopus 로고
    • Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology
    • Lee, V.K., et al. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell. Mol. Bioeng. 7 (2014), 460–472.
    • (2014) Cell. Mol. Bioeng. , vol.7 , pp. 460-472
    • Lee, V.K.1
  • 64
    • 84860916466 scopus 로고    scopus 로고
    • The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds
    • Zhao, L., et al. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials 33 (2012), 5325–5332.
    • (2012) Biomaterials , vol.33 , pp. 5325-5332
    • Zhao, L.1
  • 65
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
    • Miller, J.S., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11 (2012), 768–774.
    • (2012) Nat. Mater. , vol.11 , pp. 768-774
    • Miller, J.S.1
  • 66
    • 79959731599 scopus 로고    scopus 로고
    • Omnidirectional printing of 3D microvascular networks
    • Wu, W., et al. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23 (2011), H178–H183.
    • (2011) Adv. Mater. , vol.23 , pp. H178-H183
    • Wu, W.1
  • 67
    • 84945206002 scopus 로고    scopus 로고
    • 3D bioprinted complex structure for engineering the muscle-tendon unit
    • Merceron, T.K., et al. 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication, 7, 2015, 35003.
    • (2015) Biofabrication , vol.7 , pp. 35003
    • Merceron, T.K.1
  • 68
    • 84855396802 scopus 로고    scopus 로고
    • Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds
    • Fedorovich, N.E., et al. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. C: Methods 18 (2011), 33–44.
    • (2011) Tissue Eng. C: Methods , vol.18 , pp. 33-44
    • Fedorovich, N.E.1
  • 69
    • 84899574160 scopus 로고    scopus 로고
    • A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
    • Park, J.Y., et al. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication, 6, 2014, 35004.
    • (2014) Biofabrication , vol.6 , pp. 35004
    • Park, J.Y.1
  • 70
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim, J-H., et al. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng., 22, 2012, 85014.
    • (2012) J. Micromech. Microeng. , vol.22 , pp. 85014
    • Shim, J.-H.1
  • 71
    • 84903964392 scopus 로고    scopus 로고
    • Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets
    • Gurkan, U.A., et al. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharm. 11 (2014), 2151–2159.
    • (2014) Mol. Pharm. , vol.11 , pp. 2151-2159
    • Gurkan, U.A.1
  • 72
    • 84924351834 scopus 로고    scopus 로고
    • A hybrid bioprinting approach for scale-up tissue fabrication
    • Yu, Y., et al. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng., 136, 2014, 61013.
    • (2014) J. Manuf. Sci. Eng. , vol.136 , pp. 61013
    • Yu, Y.1
  • 73
    • 84896744666 scopus 로고    scopus 로고
    • Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing
    • Lorber, B., et al. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication, 6, 2014, 15001.
    • (2014) Biofabrication , vol.6 , pp. 15001
    • Lorber, B.1
  • 74
    • 84939617468 scopus 로고    scopus 로고
    • 3D printing of layered brain-like structures using peptide modified gellan gum substrates
    • Lozano, R., et al. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67 (2015), 264–273.
    • (2015) Biomaterials , vol.67 , pp. 264-273
    • Lozano, R.1
  • 75
    • 84961219034 scopus 로고    scopus 로고
    • Current advances and future perspectives in extrusion-based bioprinting
    • Ozbolat, I.T., Hospodiuk, M., Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76 (2016), 321–343.
    • (2016) Biomaterials , vol.76 , pp. 321-343
    • Ozbolat, I.T.1    Hospodiuk, M.2
  • 76
    • 84890381496 scopus 로고    scopus 로고
    • Bone tissue engineering using 3D printing
    • Bose, S., et al. Bone tissue engineering using 3D printing. Mater. Today 16 (2013), 496–504.
    • (2013) Mater. Today , vol.16 , pp. 496-504
    • Bose, S.1
  • 77
    • 84877995448 scopus 로고    scopus 로고
    • Bioresorbable airway splint created with a three-dimensional printer
    • Zopf, D.A., et al. Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 368 (2013), 2043–2045.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 2043-2045
    • Zopf, D.A.1
  • 78
    • 79959348117 scopus 로고    scopus 로고
    • Decellularized tissue-engineered blood vessel as an arterial conduit
    • Quint, C., et al. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 9214–9219.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 9214-9219
    • Quint, C.1
  • 79
    • 77954605785 scopus 로고    scopus 로고
    • Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration
    • Yoshida, Y., Yamanaka, S., Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circ. 122 (2010), 80–87.
    • (2010) Circ. , vol.122 , pp. 80-87
    • Yoshida, Y.1    Yamanaka, S.2
  • 80
    • 84930240627 scopus 로고    scopus 로고
    • Biomimetic 3D tissue models for advanced high-throughput drug screening
    • Nam, K-H., et al. Biomimetic 3D tissue models for advanced high-throughput drug screening. J. Lab. Autom. 20 (2015), 201–215.
    • (2015) J. Lab. Autom. , vol.20 , pp. 201-215
    • Nam, K.-H.1
  • 81
    • 82055190186 scopus 로고    scopus 로고
    • Microengineering methods for cell-based microarrays and high-throughput drug-screening applications
    • Xu, F., et al. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication, 3, 2011, 34101.
    • (2011) Biofabrication , vol.3 , pp. 34101
    • Xu, F.1
  • 82
    • 45249122800 scopus 로고    scopus 로고
    • Direct cell writing of 3D microorgan for in vitro pharmacokinetic model
    • Chang, R., et al. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng. C: Methods 14 (2008), 157–166.
    • (2008) Tissue Eng. C: Methods , vol.14 , pp. 157-166
    • Chang, R.1
  • 83
    • 79953002875 scopus 로고    scopus 로고
    • Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
    • Chang, R., et al. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2, 2010, 45004.
    • (2010) Biofabrication , vol.2 , pp. 45004
    • Chang, R.1
  • 84
    • 84955640418 scopus 로고    scopus 로고
    • Numerical investigation of dynamic microorgan devices as drug screening platforms. Part I: Macroscale modeling approach & validation
    • Tourlomousis, F., Chang, R.C., Numerical investigation of dynamic microorgan devices as drug screening platforms. Part I: Macroscale modeling approach & validation. Biotechnol. Bioeng. 113 (2016), 612–622.
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 612-622
    • Tourlomousis, F.1    Chang, R.C.2
  • 85
    • 84872009025 scopus 로고    scopus 로고
    • High throughput miniature drug-screening platform using bioprinting technology
    • Rodríguez-Dévora, J.I., et al. High throughput miniature drug-screening platform using bioprinting technology. Biofabrication, 4, 2012, 35001.
    • (2012) Biofabrication , vol.4 , pp. 35001
    • Rodríguez-Dévora, J.I.1
  • 86
    • 34548071012 scopus 로고    scopus 로고
    • Single cell epitaxy by acoustic picolitre droplets
    • Demirci, U., Montesano, G., Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7 (2007), 1139–1145.
    • (2007) Lab Chip , vol.7 , pp. 1139-1145
    • Demirci, U.1    Montesano, G.2
  • 87
    • 77951143354 scopus 로고    scopus 로고
    • Cell bioprinting as a potential high-throughput method for fabricating cell-based biosensors (CBBs)
    • Xu, F., et al. Cell bioprinting as a potential high-throughput method for fabricating cell-based biosensors (CBBs). IEEE Sensors, 2009, 10.1109/ICSENS.2009.5398245.
    • (2009) IEEE Sensors
    • Xu, F.1
  • 88
    • 84925287257 scopus 로고    scopus 로고
    • Startups tout commercially 3D-printed tissue for drug screening
    • Vaidya, M., Startups tout commercially 3D-printed tissue for drug screening. Nat. Med., 21, 2015, 2.
    • (2015) Nat. Med. , vol.21 , pp. 2
    • Vaidya, M.1
  • 89
    • 84957547702 scopus 로고    scopus 로고
    • 3-dimensional bioprinting makes its mark: new tissue and organ printing methods are yielding critical new tools for the laboratory and clinic
    • Nelson, B., 3-dimensional bioprinting makes its mark: new tissue and organ printing methods are yielding critical new tools for the laboratory and clinic. Cancer Cytopathol. 123 (2015), 203–204.
    • (2015) Cancer Cytopathol. , vol.123 , pp. 203-204
    • Nelson, B.1
  • 90
    • 84940739103 scopus 로고    scopus 로고
    • Bioprinting: an industrial perspective
    • A. Atala J.J. Yoo Elsevier
    • Roskos, K., et al. Bioprinting: an industrial perspective. Atala, A., Yoo, J.J., (eds.) Essentials of 3D Biofabrication and Translation, 2015, Elsevier, 395–412.
    • (2015) Essentials of 3D Biofabrication and Translation , pp. 395-412
    • Roskos, K.1
  • 91
    • 79551649124 scopus 로고    scopus 로고
    • A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform
    • Xu, F., et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 6 (2011), 204–212.
    • (2011) Biotechnol. J. , vol.6 , pp. 204-212
    • Xu, F.1
  • 92
    • 84899560969 scopus 로고    scopus 로고
    • Three-dimensional printing of HeLa cells for cervical tumor model in vitro
    • Zhao, Y., et al. Three-dimensional printing of HeLa cells for cervical tumor model in vitro. Biofabrication, 6, 2014, 35001.
    • (2014) Biofabrication , vol.6 , pp. 35001
    • Zhao, Y.1
  • 93
    • 84894488673 scopus 로고    scopus 로고
    • 3D printing of biomimetic microstructures for cancer cell migration
    • Huang, T.Q., et al. 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices 16 (2014), 127–132.
    • (2014) Biomed. Microdevices , vol.16 , pp. 127-132
    • Huang, T.Q.1
  • 94
    • 84940454628 scopus 로고    scopus 로고
    • Development of 3D bioprinted human breast cancer for in vitro drug screening
    • King, S.M., et al. Development of 3D bioprinted human breast cancer for in vitro drug screening. Cancer Res., 74, 2014, 2034.
    • (2014) Cancer Res. , vol.74 , pp. 2034
    • King, S.M.1
  • 95
    • 0037677695 scopus 로고    scopus 로고
    • Increased islet volume but unchanged islet number in ob/ob mice
    • Bock, T., et al. Increased islet volume but unchanged islet number in ob/ob mice. Diabetes 52 (2003), 1716–1722.
    • (2003) Diabetes , vol.52 , pp. 1716-1722
    • Bock, T.1
  • 96
    • 84942770602 scopus 로고    scopus 로고
    • A 3D map of the islet routes throughout the healthy human pancreas
    • Ionescu-Tirgoviste, C., et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci. Rep., 5, 2015, 14634.
    • (2015) Sci. Rep. , vol.5 , pp. 14634
    • Ionescu-Tirgoviste, C.1
  • 97
    • 84855504095 scopus 로고    scopus 로고
    • The pig: a model for human infectious diseases
    • Meurens, F., et al. The pig: a model for human infectious diseases. Trends Microbiol. 20 (2012), 50–57.
    • (2012) Trends Microbiol. , vol.20 , pp. 50-57
    • Meurens, F.1
  • 98
    • 84914159054 scopus 로고    scopus 로고
    • In vitro study of directly bioprinted perfusable vasculature conduits
    • Zhang, Y., et al. In vitro study of directly bioprinted perfusable vasculature conduits. Biomater. Sci. 3 (2015), 134–143.
    • (2015) Biomater. Sci. , vol.3 , pp. 134-143
    • Zhang, Y.1
  • 99
    • 84896353618 scopus 로고    scopus 로고
    • In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits
    • Dolati, F., et al. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology, 25, 2014, 145101.
    • (2014) Nanotechnology , vol.25 , pp. 145101
    • Dolati, F.1
  • 100
    • 84924411549 scopus 로고    scopus 로고
    • Bioprinting technology: a current state-of-the-art review
    • Dababneh, A., Ozbolat, I.T., Bioprinting technology: a current state-of-the-art review. J. Manuf. Sci. Eng., 136, 2014, 061016.
    • (2014) J. Manuf. Sci. Eng. , vol.136 , pp. 061016
    • Dababneh, A.1    Ozbolat, I.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.